This file is indexed.

/usr/share/perl5/DateTime/Astro/Sunrise.pm is in libdatetime-astro-sunrise-perl 0.01.01-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
package DateTime::Astro::Sunrise;

use strict;
require Exporter;
use POSIX qw(floor);
use Math::Trig;
use Carp;
use DateTime;
use vars qw( $VERSION $RADEG $DEGRAD @ISA );
@ISA       = qw( Exporter );
$VERSION = qw($Revision: 0.01_01 $) [1];
$RADEG   = ( 180 / pi );
$DEGRAD  = ( pi / 180 );
my $INV360 = ( 1.0 / 360.0 );

my $upper_limb = '1';

sub new {
    my $class = shift;
    my %args;
    $args{LON}  = shift;
    $args{LAT}  = shift;
    $args{ALT}  = shift;
    $args{ITER} = shift;
    unless ( $args{LON} ) {
        croak "You need to have a longitude\n";
    }

    unless ( $args{LAT} ) {
        croak "You need to have a latitude\n";
    }

    return bless \%args, $class;

}

sub sunrise {
    my ( $self, $dt ) = @_;

    my ( $year, $month, $day ) = ( $dt->year, $dt->month, $dt->day );
    my $altit     = $self->{ALT} || -0.833;
    my $iteration = defined( $self->{ITER} ) ? $self->{ITER} : 0;

    if ($iteration) {

        # This is the initial start

        my $d =
          days_since_2000_Jan_0( $year, $month, $day ) + 0.5 - $self->{LON} /
          360.0;
        my ( $tmp_rise_1, $tmp_set_1 ) =
          sun_rise_set( $d, $self->{LON}, $self->{LAT}, $altit,
          15.04107 );

# Now we have the initial rise/set times next recompute d using the exact moment
# recompute sunrise

        my $tmp_rise_2 = 9;
        my $tmp_rise_3 = 0;
        until ( equal( $tmp_rise_2, $tmp_rise_3, 8 ) ) {

            my $d_sunrise_1 = $d + $tmp_rise_1 / 24.0;
            ( $tmp_rise_2, undef ) = sun_rise_set(
              $d_sunrise_1, $self->{LON}, $self->{LAT}, $altit,
              15.04107
            );
            $tmp_rise_1 = $tmp_rise_3;
            my $d_sunrise_2 = $d + $tmp_rise_2 / 24.0;
            ( $tmp_rise_3, undef ) = sun_rise_set(
              $d_sunrise_2, $self->{LON}, $self->{LAT}, $altit,
              15.04107
            );

	    #print "tmp_rise2 is: $tmp_rise_2 tmp_rise_3 is:$tmp_rise_3\n";

        }

###################################################################################
        # end sunrise
###################################################################################

        my $tmp_set_2 = 9;
        my $tmp_set_3 = 0;

        until ( equal( $tmp_set_2, $tmp_set_3, 8 ) ) {

            my $d_sunset_1 = $d + $tmp_set_1 / 24.0;
            ( undef, $tmp_set_2 ) = sun_rise_set(
              $d_sunset_1, $self->{LON}, $self->{LAT}, $altit,
              15.04107
            );
            $tmp_set_1 = $tmp_set_3;
            my $d_sunset_2 = $d + $tmp_set_2 / 24.0;
            ( undef, $tmp_set_3 ) = sun_rise_set(
              $d_sunset_2, $self->{LON}, $self->{LAT}, $altit,
              15.04107
            );

	    #print "tmp_set_1 is: $tmp_set_1 tmp_set_3 is:$tmp_set_3\n";

        }

        my ( $hour_rise, $min_rise, $hour_set, $min_set ) = convert_hour($tmp_rise_3,$tmp_set_3);
        my $rise_time = DateTime->new(
          year      => $dt->year,
          month     => $dt->month,
          day       => $dt->day,
          hour      => $hour_rise % 24,
          minute    => $min_rise,
          time_zone => 'UTC'
        );
        my $set_time = DateTime->new(
          year      => $dt->year,
          month     => $dt->month,
          day       => $dt->day,
          hour      => $hour_set % 24,
          minute    => $min_set,
          time_zone => 'UTC'
        );
      return ($rise_time, $set_time); 
    }
    else {
        my $d =
          days_since_2000_Jan_0( $year, $month, $day ) + 0.5 - $self->{LON} /
          360.0;
        my ( $h1, $h2 ) =
          sun_rise_set( $d, $self->{LON}, $self->{LAT}, $altit, 15.0 );
        my ( $hour_rise, $min_rise, $hour_set, $min_set ) =
          convert_hour( $h1, $h2 );

        my $rise_time = DateTime->new(
          year      => $dt->year,
          month     => $dt->month,
          day       => $dt->day,
          hour      => $hour_rise % 24,
          minute    => $min_rise,
          time_zone => 'UTC'
        );
        my $set_time = DateTime->new(
          year      => $dt->year,
          month     => $dt->month,
          day       => $dt->day,
          hour      => $hour_set % 24,
          minute    => $min_set,
          time_zone => 'UTC'
        );
      return ($rise_time, $set_time);
    }

}

sub sun_rise_set {
    my ( $d, $lon, $lat, $altit, $h ) = @_;

    
    # Compute local sidereal time of this moment
    my $sidtime = revolution( GMST0($d) + 180.0 + $lon );

    # Compute Sun's RA + Decl + distance at this moment
    my ( $sRA, $sdec, $sr ) = sun_RA_dec($d);

    # Compute time when Sun is at south - in hours UT
    my $tsouth  = 12.0 - rev180( $sidtime - $sRA ) /$h ;

    # Compute the Sun's apparent radius, degrees
    my $sradius = 0.2666 / $sr;

    # Do correction to upper limb, if necessary
    if ($upper_limb) {
        $altit -= $sradius;
    }

    # Compute the diurnal arc that the Sun traverses to reach 
    # the specified altitude altit: 

    my $cost =
      ( sind($altit) - sind($lat) * sind($sdec) ) /
      ( cosd($lat) * cosd($sdec) );

    my $t;
    if ( $cost >= 1.0 ) {
        carp "Sun never rises!!\n";
        $t = 0.0;    # Sun always below altit
    }
    elsif ( $cost <= -1.0 ) {
        carp "Sun never sets!!\n";
        $t = 12.0;    # Sun always above altit
    }
    else {
        $t = acosd($cost) / 15.0;    # The diurnal arc, hours
    }

    # Store rise and set times - in hours UT 

    my $hour_rise_ut = $tsouth - $t;
    my $hour_set_ut  = $tsouth + $t;
    return ( $hour_rise_ut, $hour_set_ut );

    
}

#########################################################################################################
sub GMST0 {

    #
    #
    # FUNCTIONAL SEQUENCE for GMST0 
    #
    # _GIVEN
    # Day number
    #
    # _THEN
    #
    # computes GMST0, the Greenwich Mean Sidereal Time  
    # at 0h UT (i.e. the sidereal time at the Greenwhich meridian at  
    # 0h UT).  GMST is then the sidereal time at Greenwich at any     
    # time of the day..
    # 
    #
    # _RETURN
    #
    # Sidtime
    #
    my ($d) = @_;

    my $sidtim0 =
      revolution( ( 180.0 + 356.0470 + 282.9404 ) +
      ( 0.9856002585 + 4.70935E-5 ) * $d );
    return $sidtim0;

}

sub sunpos {

    #
    #
    # FUNCTIONAL SEQUENCE for sunpos
    #
    # _GIVEN
    #  day number
    #
    # _THEN
    #
    # Computes the Sun's ecliptic longitude and distance */
    # at an instant given in d, number of days since     */
    # 2000 Jan 0.0. 
    # 
    #
    # _RETURN
    #
    # ecliptic longitude and distance
    # ie. $True_solar_longitude, $Solar_distance
    #
    my ($d) = @_;

    #                       Mean anomaly of the Sun 
    #                       Mean longitude of perihelion 
    #                         Note: Sun's mean longitude = M + w 
    #                       Eccentricity of Earth's orbit 
    #                       Eccentric anomaly 
    #                       x, y coordinates in orbit 
    #                       True anomaly 

    # Compute mean elements 
    my $Mean_anomaly_of_sun = revolution( 356.0470 + 0.9856002585 * $d );
    my $Mean_longitude_of_perihelion = 282.9404 + 4.70935E-5 * $d;
    my $Eccentricity_of_Earth_orbit  = 0.016709 - 1.151E-9 * $d;

    # Compute true longitude and radius vector 
    my $Eccentric_anomaly =
      $Mean_anomaly_of_sun + $Eccentricity_of_Earth_orbit * $RADEG *
      sind($Mean_anomaly_of_sun) *
      ( 1.0 + $Eccentricity_of_Earth_orbit * cosd($Mean_anomaly_of_sun) );

    my $x = cosd($Eccentric_anomaly) - $Eccentricity_of_Earth_orbit;

    my $y =
      sqrt( 1.0 - $Eccentricity_of_Earth_orbit * $Eccentricity_of_Earth_orbit )
      * sind($Eccentric_anomaly);

    my $Solar_distance = sqrt( $x * $x + $y * $y );    # Solar distance
    my $True_anomaly = atan2d( $y, $x );               # True anomaly

    my $True_solar_longitude =
      $True_anomaly + $Mean_longitude_of_perihelion;    # True solar longitude

    if ( $True_solar_longitude >= 360.0 ) {
        $True_solar_longitude -= 360.0;    # Make it 0..360 degrees
    }

    return ( $Solar_distance, $True_solar_longitude );
}

sub sun_RA_dec {

    #
    #
    # FUNCTIONAL SEQUENCE for sun_RA_dec 
    #
    # _GIVEN
    # day number, $r and $lon (from sunpos) 
    #
    # _THEN
    #
    # compute RA and dec
    # 
    #
    # _RETURN
    #
    # Sun's Right Ascension (RA), Declination (dec) and distance (r)
    # 
    #
    my ($d) = @_;

    # Compute Sun's ecliptical coordinates 
    my ( $r, $lon ) = sunpos($d);

    # Compute ecliptic rectangular coordinates (z=0) 
    my $x = $r * cosd($lon);
    my $y = $r * sind($lon);

    # Compute obliquity of ecliptic (inclination of Earth's axis) 
    my $obl_ecl = 23.4393 - 3.563E-7 * $d;

    # Convert to equatorial rectangular coordinates - x is unchanged 
    my $z = $y * sind($obl_ecl);
    $y = $y * cosd($obl_ecl);

    # Convert to spherical coordinates 
    my $RA  = atan2d( $y, $x );
    my $dec = atan2d( $z, sqrt( $x * $x + $y * $y ) );

    return ( $RA, $dec, $r );

}    # sun_RA_dec

sub days_since_2000_Jan_0 {

    #
    #
    # FUNCTIONAL SEQUENCE for days_since_2000_Jan_0 
    #
    # _GIVEN
    # year, month, day
    #
    # _THEN
    #
    # process the year month and day (counted in days)
    # Day 0.0 is at Jan 1 2000 0.0 UT
    # Note that ALL divisions here should be INTEGER divisions
    #
    # _RETURN
    #
    # day number
    #
    use integer;
    my ( $year, $month, $day ) = @_;

    my $d =
      ( 367 * ($year) -
      int( ( 7 * ( ($year) + ( ( ($month) + 9 ) / 12 ) ) ) / 4 ) +
      int( ( 275 * ($month) ) / 9 ) + ($day) - 730530 );

    return $d;

}

sub sind {
    sin( ( $_[0] ) * $DEGRAD );
}

sub cosd {
    cos( ( $_[0] ) * $DEGRAD );
}

sub tand {
    tan( ( $_[0] ) * $DEGRAD );
}

sub atand {
    ( $RADEG * atan( $_[0] ) );
}

sub asind {
    ( $RADEG * asin( $_[0] ) );
}

sub acosd {
    ( $RADEG * acos( $_[0] ) );
}

sub atan2d {
    ( $RADEG * atan2( $_[0], $_[1] ) );
}

sub revolution {

    #
    #
    # FUNCTIONAL SEQUENCE for revolution
    #
    # _GIVEN
    # any angle
    #
    # _THEN
    #
    # reduces any angle to within the first revolution 
    # by subtracting or adding even multiples of 360.0
    # 
    #
    # _RETURN
    #
    # the value of the input is >= 0.0 and < 360.0
    #

    my $x = $_[0];
    return ( $x - 360.0 * floor( $x * $INV360 ) );
}

sub rev180 {

    #
    #
    # FUNCTIONAL SEQUENCE for rev180
    #
    # _GIVEN
    # 
    # any angle
    #
    # _THEN
    #
    # Reduce input to within +180..+180 degrees
    # 
    #
    # _RETURN
    #
    # angle that was reduced
    #
    my ($x) = @_;

    return ( $x - 360.0 * floor( $x * $INV360 + 0.5 ) );
}

sub equal {
    my ( $A, $B, $dp ) = @_;

    return sprintf( "%.${dp}g", $A ) eq sprintf( "%.${dp}g", $B );
}

sub convert_hour {

    #
    #
    # FUNCTIONAL SEQUENCE for convert_hour 
    #
    # _GIVEN
    # Hour_rise, Hour_set 
    # hours are in UT
    #
    # _THEN
    #
    # split out the hours and minites
    # 
    #
    # _RETURN
    #
    # hour:min rise and set 
    #

    my ( $hour_rise_ut, $hour_set_ut ) = @_;

    my $min_rise = int( ( $hour_rise_ut - int($hour_rise_ut) ) * 60 );
    my $min_set  = int( ( $hour_set_ut - int($hour_set_ut) ) * 60 );

    my $hour_rise = int($hour_rise_ut);
    my $hour_set  = int($hour_set_ut);
    if ( $min_rise < 10 ) {
        $min_rise = sprintf( "%02d", $min_rise );
    }

    if ( $min_set < 10 ) {
        $min_set = sprintf( "%02d", $min_set );
    }

    return ( $hour_rise, $min_rise, $hour_set, $min_set );
}

=head1 NAME

DateTime::Astro::Sunrise - Perl DateTime extension for computing the sunrise/sunset on a given day

=head1 SYNOPSIS

 use DateTime;
 use DateTime::Astro::Sunrise;
 
 my $dt = DateTime->new( year   => 2000,
                         month  => 6,
                         day    => 20,
                  );

my $sunrise = DateTime::Astro::Sunrise ->new('-118','33',undef,1);

my ($tmp_rise, $tmp_set) = $sunrise->sunrise($dt); 
 
 
=head1 DESCRIPTION

This module will return a DateTime Object for sunrise and sunset for a given day.

=head1 USAGE

=over

=item B<my $sunrise = DateTime::Astro::Sunrise ->new(longitutide,latatude,ALT,Iteration);>

=over

 Eastern longitude is entered as a positive number
 Western longitude is entered as a negative number
 Northern latitude is entered as a positive number
 Southern latitude is entered as a negative number

inter is set to either 0 or 1.
If set to 0 no Iteration will occur.
If set to 1 Iteration will occur.
Default is 0.

There are a number of sun altitides to chose from.  The default is
-0.833 because this is what most countries use. Feel free to
specify it if you need to. Here is the list of values to specify
altitude (ALT) with:

=over

=item B<0> degrees

Center of Sun's disk touches a mathematical horizon

=item B<-0.25> degrees

Sun's upper limb touches a mathematical horizon

=item B<-0.583> degrees

Center of Sun's disk touches the horizon; atmospheric refraction accounted for

=item B<-0.833> degrees

Sun's supper limb touches the horizon; atmospheric refraction accounted for

=item B<-6> degrees

Civil twilight (one can no longer read outside without artificial illumination)

=item B<-12> degrees

Nautical twilight (navigation using a sea horizon no longer possible)

=item B<-15> degrees

Amateur astronomical twilight (the sky is dark enough for most astronomical observations)

=item B<-18> degrees

Astronomical twilight (the sky is completely dark)

=item F<Notes on Iteration>

=over

The orginal method only gives an approximate value of the Sun's rise/set times. 
The error rarely exceeds one or two minutes, but at high latitudes, when the Midnight Sun 
soon will start or just has ended, the errors may be much larger. If you want higher accuracy, 
you must then use the iteration feature. This feature is new as of version 0.7. Here is
what I have tried to accomplish with this.

a) Compute sunrise or sunset as always, with one exception: to convert LHA from degrees to hours,
   divide by 15.04107 instead of 15.0 (this accounts for the difference between the solar day 
   and the sidereal day.

b) Re-do the computation but compute the Sun's RA and Decl, and also GMST0, for the moment 
   of sunrise or sunset last computed.

c) Iterate b) until the computed sunrise or sunset no longer changes significantly. 
   Usually 2 iterations are enough, in rare cases 3 or 4 iterations may be needed.



=back

=back

=back

=back

=head1 ($sunrise, $sunset) = $sunrise->($dt);


Returns two DateTime objects sunrise and sunset.
Please note that the time zone for these objects
is set to UTC. So don't forget to set your timezone!!



=head1 AUTHOR

Ron Hill
rkhill@firstlight.net

=head1 CREDITS


=over

=item  Paul Schlyer, Stockholm, Sweden 

for his excellent web page on the subject.

=item Rich Bowen (rbowen@rbowen.com)

for suggestions

=back

=head1 COPYRIGHT and LICENSE

Here is the copyright information provided by Paul Schlyer:

Written as DAYLEN.C, 1989-08-16

Modified to SUNRISET.C, 1992-12-01

(c) Paul Schlyter, 1989, 1992

Released to the public domain by Paul Schlyter, December 1992

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

=head1 BUGS

=head1 SEE ALSO

perl(1).

=cut
1;