/usr/include/dune/functions/functionspacebases/powerbasis.hh is in libdune-functions-dev 2.5.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_FUNCTIONS_FUNCTIONSPACEBASES_POWERBASIS_HH
#define DUNE_FUNCTIONS_FUNCTIONSPACEBASES_POWERBASIS_HH
#include <dune/common/reservedvector.hh>
#include <dune/common/typeutilities.hh>
#include <dune/typetree/powernode.hh>
#include <dune/typetree/utility.hh>
#include <dune/functions/common/utility.hh>
#include <dune/functions/common/type_traits.hh>
#include <dune/functions/functionspacebases/basistags.hh>
#include <dune/functions/functionspacebases/nodes.hh>
namespace Dune {
namespace Functions {
// *****************************************************************************
// This is the reusable part of the power bases. It contains
//
// PowerNodeFactory
// PowerNodeIndexSet
//
// The factory allows to create the others and is the owner of possible shared
// state. These components do _not_ depend on the global basis or index
// set and can be used without a global basis.
// *****************************************************************************
template<class MI, class TP, class IMS, class SF, std::size_t C>
class PowerNodeIndexSet;
/**
* \brief A factory for power bases
*
* This node factory represente a power of a given node factory.
* Its node type is a PowerBasisNodes for the given subnode.
*
* \tparam MI Type to be used for multi-indices
* \tparam IMS An IndexMergingStrategy used to merge the global indices of the child factories
* \tparam SF The child factory
* \tparam C The exponent of the power node
*/
template<class MI, class IMS, class SF, std::size_t C>
class PowerNodeFactory
{
static const std::size_t children = C;
template<class, class, class, class, std::size_t>
friend class PowerNodeIndexSet;
public:
//! The child factory
using SubFactory = SF;
//! The grid view that the FE basis is defined on
using GridView = typename SF::GridView;
//! Type used for indices and size information
using size_type = std::size_t;
//! Strategy used to merge the global indices of the child factories
using IndexMergingStrategy = IMS;
template<class TP>
using SubNode = typename SubFactory::template Node<decltype(TypeTree::push_back(TP(), 0))>;
template<class TP>
using SubIndexSet = typename SubFactory::template IndexSet<decltype(TypeTree::push_back(TP(), 0))>;
//! Template mapping root tree path to type of created tree node
template<class TP>
using Node = PowerBasisNode<size_type, TP, SubNode<TP>, children>;
//! Template mapping root tree path to type of created tree node index set
template<class TP>
using IndexSet = PowerNodeIndexSet<MI, TP, IMS, SF, C>;
//! Type used for global numbering of the basis vectors
using MultiIndex = MI;
//! Type used for prefixes handed to the size() method
using SizePrefix = Dune::ReservedVector<size_type, SubFactory::SizePrefix::max_size()+1>;
private:
using SubMultiIndex = MI;
public:
/**
* \brief Constructor for given child factory objects
*
* The child factories will be stored as copies
*/
template<class... SFArgs,
disableCopyMove<PowerNodeFactory, SFArgs...> = 0,
enableIfConstructible<SubFactory, SFArgs...> = 0>
PowerNodeFactory(SFArgs&&... sfArgs) :
subFactory_(std::forward<SFArgs>(sfArgs)...)
{}
//! Initialize the global indices
void initializeIndices()
{
subFactory_.initializeIndices();
}
//! Obtain the grid view that the basis is defined on
const GridView& gridView() const
{
return subFactory_.gridView();
}
//! Update the stored grid view, to be called if the grid has changed
void update(const GridView& gv)
{
subFactory_.update(gv);
}
/**
* \brief Create tree node with given root tree path
*
* \tparam TP Type of root tree path
* \param tp Root tree path
*
* By passing a non-trivial root tree path this can be used
* to create a node suitable for being placed in a tree at
* the position specified by the root tree path.
*/
template<class TP>
Node<TP> node(const TP& tp) const
{
auto node = Node<TP>(tp);
for (std::size_t i=0; i<children; ++i)
node.setChild(i, subFactory_.node(TypeTree::push_back(tp, i)));
return node;
}
/**
* \brief Create tree node index set with given root tree path
*
* \tparam TP Type of root tree path
* \param tp Root tree path
*
* Create an index set suitable for the tree node obtained
* by node(tp).
*/
template<class TP>
IndexSet<TP> indexSet() const
{
return IndexSet<TP>{*this};
}
//! Same as size(prefix) with empty prefix
size_type size() const
{
return size({});
}
//! Return number of possible values for next position in multi index
size_type size(const SizePrefix& prefix) const
{
return size(prefix, IndexMergingStrategy{});
}
private:
size_type size(const SizePrefix& prefix, BasisBuilder::FlatInterleaved) const
{
// The root index size is the root index size of a single subnode
// multiplied by the number of subnodes because we enumerate all
// child indices in a row.
if (prefix.size() == 0)
return children*subFactory_.size({});
// The first prefix entry refers to one of the (root index size)
// subindex trees. Hence we have to first compute the corresponding
// prefix entry for a single subnode subnode. The we can append
// the other prefix entries unmodified, because the index tree
// looks the same after the first level.
typename SubFactory::SizePrefix subPrefix;
subPrefix.push_back(prefix[0] / children);
for(std::size_t i=1; i<prefix.size(); ++i)
subPrefix.push_back(prefix[i]);
return subFactory_.size(subPrefix);
}
size_type size(const SizePrefix& prefix, BasisBuilder::FlatLexicographic) const
{
// The size at the index tree root is the size of at the index tree
// root of a single subnode multiplied by the number of subnodes
// because we enumerate all child indices in a row.
if (prefix.size() == 0)
return children*subFactory_.size({});
// The first prefix entry refers to one of the (root index size)
// subindex trees. Hence we have to first compute the corresponding
// prefix entry for a single subnode subnode. The we can append
// the other prefix entries unmodified, because the index tree
// looks the same after the first level.
typename SubFactory::SizePrefix subPrefix;
subPrefix.push_back(prefix[0] % children);
for(std::size_t i=1; i<prefix.size(); ++i)
subPrefix.push_back(prefix[i]);
return subFactory_.size(subPrefix);
}
size_type size(const SizePrefix& prefix, BasisBuilder::BlockedLexicographic) const
{
if (prefix.size() == 0)
return children;
typename SubFactory::SizePrefix subPrefix;
for(std::size_t i=1; i<prefix.size(); ++i)
subPrefix.push_back(prefix[i]);
return subFactory_.size(subPrefix);
}
size_type size(const SizePrefix& prefix, BasisBuilder::LeafBlockedInterleaved) const
{
if (prefix.size() == 0)
return subFactory_.size();
typename SubFactory::SizePrefix subPrefix;
for(std::size_t i=0; i<prefix.size()-1; ++i)
subPrefix.push_back(prefix[i]);
size_type r = subFactory_.size(subPrefix);
if (r==0)
return 0;
subPrefix.push_back(prefix.back());
r = subFactory_.size(subPrefix);
if (r==0)
return children;
return r;
}
public:
//! Get the total dimension of the space spanned by this basis
size_type dimension() const
{
return subFactory_.dimension() * children;
}
//! Get the maximal number of DOFs associated to node for any element
size_type maxNodeSize() const
{
return subFactory_.maxNodeSize() * children;
}
protected:
SubFactory subFactory_;
};
template<class MI, class TP, class IMS, class SF, std::size_t C>
class PowerNodeIndexSet
{
static const std::size_t children = C;
public:
using SubFactory = SF;
/** \brief The grid view that the FE space is defined on */
using GridView = typename SF::GridView;
using size_type = std::size_t;
using IndexMergingStrategy = IMS;
/** \brief Type used for global numbering of the basis vectors */
using MultiIndex = MI;
using NodeFactory = PowerNodeFactory<MI, IMS, SF, C>;
using Node = typename NodeFactory::template Node<TP>;
using SubTreePath = typename TypeTree::Child<Node,0>::TreePath;
using SubNodeIndexSet = typename NodeFactory::SubFactory::template IndexSet<SubTreePath>;
PowerNodeIndexSet(const NodeFactory & nodeFactory) :
nodeFactory_(&nodeFactory),
subNodeIndexSet_(nodeFactory_->subFactory_.template indexSet<SubTreePath>())
{}
void bind(const Node& node)
{
using namespace TypeTree::Indices;
node_ = &node;
subNodeIndexSet_.bind(node.child(_0));
}
void unbind()
{
node_ = nullptr;
subNodeIndexSet_.unbind();
}
size_type size() const
{
return node_->size();
}
MultiIndex index(const size_type& localIndex) const
{
return index(localIndex, IndexMergingStrategy{});
}
MultiIndex index(const size_type& localIndex, BasisBuilder::FlatInterleaved) const
{
using namespace Dune::TypeTree::Indices;
size_type subTreeSize = node_->child(_0).size();
size_type subLocalIndex = localIndex % subTreeSize;
size_type component = localIndex / subTreeSize;
MultiIndex mi = subNodeIndexSet_.index(subLocalIndex);
mi[0] = mi[0]*children+component;
return mi;
}
MultiIndex index(const size_type& localIndex, BasisBuilder::FlatLexicographic) const
{
using namespace Dune::TypeTree::Indices;
size_type subTreeSize = node_->child(_0).size();
size_type subLocalIndex = localIndex % subTreeSize;
size_type component = localIndex / subTreeSize;
size_type firstLevelSize = nodeFactory_->subFactory_.size({});
MultiIndex mi = subNodeIndexSet_.index(subLocalIndex);
mi[0] += component*firstLevelSize;
return mi;
}
MultiIndex index(const size_type& localIndex, BasisBuilder::BlockedLexicographic) const
{
using namespace Dune::TypeTree::Indices;
size_type subTreeSize = node_->child(_0).size();
size_type subLocalIndex = localIndex % subTreeSize;
size_type component = localIndex / subTreeSize;
auto subTreeMi = subNodeIndexSet_.index(subLocalIndex);
MultiIndex mi;
mi.push_back(component);
for(std::size_t i=0; i<subTreeMi.size(); ++i)
mi.push_back(subTreeMi[i]);
return mi;
}
MultiIndex index(const size_type& localIndex, BasisBuilder::LeafBlockedInterleaved) const
{
using namespace Dune::TypeTree::Indices;
size_type subTreeSize = node_->child(_0).size();
size_type subLocalIndex = localIndex % subTreeSize;
size_type component = localIndex / subTreeSize;
auto subTreeMi = subNodeIndexSet_.index(subLocalIndex);
MultiIndex mi;
for(std::size_t i=0; i<subTreeMi.size(); ++i)
mi.push_back(subTreeMi[i]);
mi.push_back(component);
return mi;
}
private:
const NodeFactory* nodeFactory_;
SubNodeIndexSet subNodeIndexSet_;
const Node* node_;
};
namespace BasisBuilder {
namespace Imp {
template<std::size_t k, class IndexMergingStrategy, class SubFactoryTag>
struct PowerNodeFactoryBuilder
{
static const bool isBlocked = std::is_same<IndexMergingStrategy,BlockedLexicographic>::value or std::is_same<IndexMergingStrategy,LeafBlockedInterleaved>::value;
static const std::size_t requiredMultiIndexSize=SubFactoryTag::requiredMultiIndexSize + (std::size_t)(isBlocked);
template<class MultiIndex, class GridView>
auto build(const GridView& gridView)
-> PowerNodeFactory<MultiIndex, IndexMergingStrategy, decltype(SubFactoryTag().template build<MultiIndex, GridView>(std::declval<GridView>())), k>
{
return {SubFactoryTag().template build<MultiIndex, GridView>(gridView)};
}
};
} // end namespace BasisBuilder::Imp
/**
* \brief Create a factory builder that can build a PowerNodeFactory
*
* \ingroup FunctionSpaceBasesImplementations
*
* \tparam SubFactoryTag Types of child factory builder and IndexMergingStrategy type
* \tparam IndexMergingStrategy An IndexMergingStrategy type
* \param tag Child factory builder objects and an IndexMergingStrategy
* \param ims IndexMergingStrategy to be used
*
* This overload can be used to explicitly supply an IndexMergingStrategy.
*/
template<std::size_t k, class SubFactoryTag, class IndexMergingStrategy>
Imp::PowerNodeFactoryBuilder<k, IndexMergingStrategy, SubFactoryTag>
power(SubFactoryTag&& tag, const IndexMergingStrategy& ims)
{
return{};
}
/**
* \brief Create a factory builder that can build a PowerNodeFactory
*
* \ingroup FunctionSpaceBasesImplementations
*
* \tparam SubFactoryTag Types of child factory builder and IndexMergingStrategy type
* \param tag Child factory builder objects and an IndexMergingStrategy
*
* This overload will select the BasisBuilder::BlockedLexicographic strategy.
*/
template<std::size_t k, class SubFactoryTag>
Imp::PowerNodeFactoryBuilder<k, LeafBlockedInterleaved, SubFactoryTag>
power(SubFactoryTag&& tag)
{
return{};
}
} // end namespace BasisBuilder
} // end namespace Functions
} // end namespace Dune
#endif // DUNE_FUNCTIONS_FUNCTIONSPACEBASES_POWERBASIS_HH
|