This file is indexed.

/usr/share/perl5/Genome/Model/Tools/Music/PathScan/CombinePvals.pm is in libgenome-model-tools-music-perl 0.04-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
package Genome::Model::Tools::Music::PathScan::CombinePvals;

#__STANDARD PERL PACKAGES
use strict;
use Carp;
use Statistics::Distributions;

#__CONSTANT OF PI -- NEEDED IN RAMANUJAN APPROX FOR POISSON PROBABILITY MASSES
#  (SEE "PATHSCAN TEST" NOTES PP 29-31)
#  use constant PI => 4*atan2 1, 1;
#  use constant LOG_PI_OVER_2 => log (PI) / 2;

################################################################################
##                                                                            ##
##         I N T R O D U C T O R Y   P O D   D O C U M E N T A T I O N        ##
##                                                                            ##
################################################################################

=head1 NAME

CombinePvals - combining probabilities from independent tests of
significance into a single aggregate figure

=head1 SYNOPSIS

	use CombinePvals;

	my $obj = CombinePvals->new ($reference_to_list_of_pvals);

	my $pval = $obj->method_name;

	my $pval = $obj->method_name (@arguments);

=head1 DESCRIPTION

There are a variety of circumstances under which one might have a number
of different kinds of tests and/or separate instances of the same kind
of test for one particular null hypothesis, where each of these tests returns a
p-value.
The problem is how to properly condense this list of
probabilities into a single value so as to be able to make
a statistical inference, e.g. whether to reject the null
hypothesis.
This problem was examined heavily starting about the 1930s, during
which time numerous mathematical contintencies were treated, e.g. dependence
vs. independence of tests, optimality, inter-test weighting, computational
efficiency, continuous vs. discrete tests and combinations thereof,
etc.
There is quite a large mathematical literature on
this topic (see L</"REFERENCES"> below) and any one
particular situation might incur some of the above
subtleties.
This package concentrates on some of the more straightforward
scenarios, furnishing various methods for combining
p-vals.
The main consideration will usually be the trade-off between
the exactness of the p-value (according to strict frequentist
modeling) and the computational efficiency, or even its actual
feasibility.
Tests should be chosen with this factor in
mind.

Note also that this scenario of combining p-values (many
tests of a single hypothesis) is fundamentally different
from that where a given hypothesis is tested multiple
times.
The latter instance usually calls for some method of multiple testing
correction.

=head1 REFERENCES

Here is an abbreviated list of the substantive works on the topic of combining
probabilities.

=over

=item *

Birnbaum, A. (1954)
I<Combining Independent Tests of Significance>,
Journal of the American Statistical Association B<49>(267), 559-574.

=item *

David, F. N. and Johnson, N. L. (1950)
I<The Probability Integral Transformation When the Variable is Discontinuous>,
Biometrika B<37>(1/2), 42-49.

=item *

Fisher, R. A. (1958)
I<Statistical Methods for Research Workers>, 13-th Ed. Revised,
Hafner Publishing Co., New York.

=item *

Lancaster, H. O. (1949)
I<The Combination of Probabilities Arising from Data in Discrete Distributions>,
Biometrika B<36>(3/4), 370-382.

=item *

Littell, R. C. and Folks, J. L. (1971)
I<Asymptotic Optimality of Fisher's Method of Combining Independent Tests>,
Journal of the American Statistical Association B<66>(336), 802-806.

=item *

Pearson, E. S. (1938)
I<The Probability Integral Transformation for Testing Goodness of Fit and
Combining Independent Tests of Significance>,
Biometrika B<30>(12), 134-148.

=item *

Pearson, E. S. (1950)
I<On Questions Raised by the Combination of Tests Based on Discontonuous
Distributions>,
Biometrika B<37>(3/4), 383-398.

=item *

Pearson, K. (1933)
I<On a Method of Determining Whether a Sample Of Size N Supposed to
Have Been Drawn From a Parent Population Having a Known Probability
Integral Has Probably Been Drawn at Random>
Biometrika B<25>(3/4), 379-410.

=item *

Van Valen, L. (1964)
I<Combining the Probabilities from Significance Tests>,
Nature B<201>(4919), 642.

=item *

Wallis, W. A. (1942)
I<Compounding Probabilities from Independent Significance Tests>,
Econometrica B<10>(3/4), 229-248.

=item *

Zelen, M. and Joel, L. S. (1959)
I<The Weighted Compounding of Two Independent Significance Tests>,
Annals of Mathematical Statistics B<30>(4), 885-895.

=back

=head1 AUTHOR

Michael C. Wendl

S<mwendl@wustl.edu>

Copyright (C) 2009 Washington University

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

=head1 GENERAL REMARKS ON METHODS

The available methods are listed
below.
Each of computational techniques assumes that tests, as
well as their associated p-values, are independent of one
another and none considers any form of differential
weighting.

=cut

################################################################################
##                                                                            ##
##                      P R O G R A M M E R   N O T E S                       ##
##                                                                            ##
################################################################################
#
#  The obj schematic resembles:
#
#  $obj = {
#
#  #__PROBABILITY VALUES FOR THE INDIVIDUAL TESTS
#     pvals => [0.103, 0.078, 0.03, 0.2,...],
#
#  #__PRODUCT OF THE INDIVIDUAL PROBABILITY VALUES
#     big_q => 0.103 * 0.078 * 0.03 * 0.2 * ...,
#
#  #__THE ACTUAL NUMBER OF TESTS (SAVED FOR CONVENIENCE)
#     num_tests = integer,
#
#  #__BINOMIAL COEFFICIENTS
#
#     this will only be defined when passing multiple lists of genes, i.e.
#     for the approximate "binning" solution - we only define the symmetric
#     half of pascal's triangle
#
#     binom_coeffs => [[1], [1], [1,2], [1,3], [1,4,6], [1,5,10], ....],
#
#  };

################################################################################
##                                                                            ##
##                         P U B L I C   M E T H O D S                        ##
##                                                                            ##
################################################################################

=head1 CONSTRUCTOR METHODS

These methods return an object in the CombinePvals
class.

=cut

################################
#  BEGIN: CONSTRUCTOR METHODS  #
################################

#  ===
#  NEW   create a new object
#  ===   ~~~~~~~~~~~~~~~~~~~

=head2 new

This is the usual object constructor, which takes a mandatory,
but otherwise un-ordered (reference to a) list of the p-values
obtained by a set of independent
tests.

	my $obj = CombinePvals->new ([0.103, 0.078, 0.03, 0.2,...]);

The method checks to make sure that all elements are actual
p-values, i.e. they are real numbers and they have values bounded by 0 and
1.

=cut

sub new {
   my $class = shift;
   my ($pvals) = @_;

#__OBJECT TEMPLATE
   my $self = {};

#__PROCESS PVALS IF THEY'RE SPECIFIED
   if (defined $pvals && $pvals) {

   #__MAKE SURE THIS IS A LIST
      croak "argument must be list reference" unless ref $pvals eq "ARRAY";

   #__SAVE LIST
      $self->{'pvals'} = $pvals;

   #__PROCESS THE INPUT
      my ($big_q, $num_tests) = (1, 0);
      foreach my $pval (@{$pvals}) {

      #__MAKE SURE THIS IS A PVAL
         croak "'$pval' is not a p-val" unless &is_a_pval ($pval);

      #__COUNT NUMBER OF TESTS
         $num_tests++;

      #__SAVE THE PRODUCT --- THIS IS THE DERIVED TEST STATISTIC
         $big_q *= $pval;
      }
      $self->{'big_q'} = $big_q;
      $self->{'num_tests'} = $num_tests;

#__OTHERWISE CROAK
   } else {
      croak "must specify a list of pvals as an argument";
   }

#__BLESS INTO CLASS AND RETURN OBJECT
   bless $self, $class;
   return $self;
}

##############################
#  END: CONSTRUCTOR METHODS  #
##############################

=head1 EXACT ENUMERATIVE PROCEDURES FOR STRICTLY DISCRETE DISTRIBUTIONS

When all the individual p-vals are derived from tests based on discrete
distributions, the "standard" continuum methods cannot be used in the strictest
sense.
Both Wallis (1942) and Lancaster (1949) discuss the option of
full enumeration, which will only be feasible when there are a
limited number of p-values and their range is not too
large.
Feasibility experiments are suggested, depending
upon the type of hardware and size of
calculation.

=cut

# Again, these methods do some rudimentary checking, but the calling
# program is responsible for making sure all elements are actual
# p-values, i.e. real numbers, have values bounded by 0 and 1,
# etc.
# They are also responsible for making sure all p-values are
# listed in decreasing order of extremity, as illustrated
# below.

####################################################################
#  BEGIN: EXACT ENUMERATIVE PROCEDURES FOR DISCRETE DISTRIBUTIONS  #
####################################################################

#  ====================
#  EXACT ENUM ARBITRARY
#  ====================
#
#  exact enumerative solution for a set of p-values obtained from an
#  arbitrary set of not-necessarily-the-same *discrete* distributions

=head2 exact_enum_arbitrary

This routine is designed for combining p-values
from completely arbitrary discrete probability
distributions.
It takes a list-of-lists data structure, each list being the probability
tails I<ordered from most extreme to least extreme> (i.e. as a probability
cummulative density function) associated with each individual
test.
However, the ordering of the lists themselves is not
important.
For instance, Wallis (1942) gives the example of two binomials, a one-tailed
test having tail values of 0.0625, 0.3125, 0.6875, 0.9375, and 1, and a
two-tailed test having tail values 0.125, 0.625, and
1.
We would then call this method using

	my $pval = $obj->exact_enum_arbitrary (
	   [0.0625, 0.3125, 0.6875, 0.9375, 1],
	   [0.125, 0.625, 1]
	);

The internal computational method is relatively
straightforard and described in detail by
Wallis (1942).
Note that this method does "all-by-all" multiplication,
so it is the least efficient, although entirely
exact.

=cut

sub exact_enum_arbitrary {
   my $obj = shift;
   my (@pvals_lists) = @_;
   my $pval = 0;

#__NUMBER OF LISTS SHOULD BE SAME AS NUMBER OF PVALS PASSED TO CONSTRUCTOR
   my $num_lists = scalar @pvals_lists;
   croak "number of lists passed ($num_lists) not equal to number of tests" .
         "in 'new' constructor ($obj->{'num_tests'})"
         unless $num_lists == $obj->{'num_tests'};

#__CHECK LIST INPUT
   my $list_num = 0;
   foreach my $list (@pvals_lists) {
      $list_num++;
      my $previous_pval = 0;
      foreach my $test_pval (@{$list}) {

      #__MAKE SURE THIS IS A PVAL
         croak "'$test_pval' in distribution $list_num is not a p-val"
            unless &is_a_pval ($test_pval);

      #__MAKE SURE THIS PVAL IS LARGER THAN PREVIOUS ONE: I.E. THIS IS A C.D.F.
         croak "distribution $list_num is not in ascending order (not a CDF)"
            unless $test_pval > $previous_pval;
 
      #__RESET
         $previous_pval = $test_pval;
      }
   }

#__COMBINE INDIVIDUAL-TEST-P-VALS INTO A SINGLE P-VAL
   $pval = $obj->_recursive_exact_enum_arbitrary ([@pvals_lists], 0, 1, 1);

#__RETURN P-VAL
   return $pval;
}

#  ====================
#  EXACT ENUM IDENTICAL
#  ====================
#
#  exact enumerative solution for a set of p-values obtained from one,
#  or rather, a set of identical *discrete* distributions

=head2 exact_enum_identical

This routine is designed for combining a set of p-values that
all come from a single probability
distribution.

	NOT IMPLEMENTED YET

=cut

##################################################################
#  END: EXACT ENUMERATIVE PROCEDURES FOR DISCRETE DISTRIBUTIONS  #
##################################################################

=head1 TRANSFORMS FOR CONTINUOUS DISTRIBUTIONS

The mathematical literature furnishes several straightforward
options for combining p-vals if all of the distributions
underlying all of the individual tests are
continuous.

=cut

####################################################
#  BEGIN: TRANSFORMS FOR CONTINUOUS DISTRIBUTIONS  #
####################################################

#  ===========================
#  FISHER CHI-SQUARE TRANSFORM
#  ===========================
#
#  Fisher's solution using the chi-square transform, valid strictly for
#  continuum distributions, but can be used approximately for discrete
#  distributions. Accuracy increases with the support of the distributions.

=head2 fisher_chisq_transform

This routine implements R.A. Fisher's (1958, originally 1932) chi-square
transform method for combining p-vals from continuous
distributions, which is essentially a CPU-efficient approximation of
K. Pearson's log-based result (see e.g. Wallis (1942) pp
232).
Note that the underlying distributions are
not actually relevant, so no arguments are
passed.

	my $pval = $obj->fisher_chisq_transform;

This is certainly the fastest and easiest method for combining p-vals,
but its accuracy for discrete distributions will not usually be very
good.
For such cases, an exact or a corrected method are better
choices.

=cut

sub fisher_chisq_transform {
   my $obj = shift;

#__GO THROUGH LIST OF INDIVIDUAL-TEST-P-VALS ACCUMULATING FISHER'S LOG
#  TRANSFORM TO CHI-SQUARE STATISTIC
#  my $chisq = 0;
#  foreach my $test_pval (@{$obj->{'pvals'}}) {
####  $chisq += - 2 * log ($test_pval);
#     $chisq -= 2 * log ($test_pval);
#  }

#__WALLIS (1942) MAKES THIS CLEVER SIMPLIFICATION
   my $chisq = -2 * log ($obj->{'big_q'});

#__TRANSFORM: TWICE THE DEGREES OF FREEDOM
   my $dof = 2 * $obj->{'num_tests'};

#__NOW GET P-VAL FROM A CHI-SQUARE TEST
   my $pval = Statistics::Distributions::chisqrprob ($dof, $chisq);

#__RETURN P-VAL
   return $pval;
}

##################################################
#  END: TRANSFORMS FOR CONTINUOUS DISTRIBUTIONS  #
##################################################

=head1 CORRECTION PROCEDURES FOR DISCRETE DISTRIBUTIONS: LANCASTER'S MODELS

Enumerative procedures quickly become infeasible if the
number of tests and/or the support of each test grow
large.
A number of procedures have been described for
correcting the methodologies designed for continuum
testing, mostly in the context of applying so-called continuity
corrections.
Essentially, these seek to "spread" dicrete data out into a pseudo-continuous
configuration as appropriate as possible, and then apply standard
transforms.
Accuracy varies and should be suitably established in each
case.

The methods in this section are due to H.O. Lancaster (1949), who discussed
two corrections based upon the idea of describing how a chi-square transformed
statistic varies between the points of a discrete
distribution.
Unfortunately, these methods require one to pass some extra information
to the routines, i.e. not only the CDF (the p-val of each test), but the
CDF value associated with the next-most-extreme
statistic.
These two pieces of information are the basis of
interpolating.
For example, if an underlying distribution has the possible tail values of
0.0625, 0.3125, 0.6875, 0.9375, 1 and the test itself has a value of
0.6875, then you would pass I<both> 0.3125 I<and> 0.6875 to the
routine.
I<In all cases, the lower value, i.e. the more
extreme one, precedes higher value in the argument
list.>
While there generally will be some extra inconvenience in obtaining
this information, the accuracy is much improved over Fisher's
method.

=cut

#  PROGRAMMING NOTE ON LANCASTER'S METHODS
#
#  Each method differs substantively by only a few lines of code, so there
#  are a lot of extra lines here that are required to offer the user 3
#  individually-named methods. This should be fixed when time permits, for
#  example, perhaps pass the name of the correction method as an argument too.

################################################################################
#  BEGIN: CORRECTION PROCEDURES FOR DISCRETE DISTRIBUTIONS: LANCASTER'S MODELS #
################################################################################

#  ==========================================================
#  LANCASTER'S MEAN-CONTINUITY-CORRECTED CHI-SQUARE TRANSFORM
#  ==========================================================

=head2 lancaster_mean_corrected_transform

This method is based on the mean value of the chi-squared transformed
statistic.

	my $pval = $obj->lancaster_mean_corrected_transform (@cdf_pairs);

Its accuracy is good, but the method is not strictly defined if one
of the tests has either the most extreme or second-to-most-extreme
statistic.

=cut

sub lancaster_mean_corrected_transform {
   my $obj = shift;
   my (@fxm1_and_fx_pvals) = @_;

#__NUMBER OF CDF PAIRS SHOULD BE SAME AS NUMBER OF PVALS PASSED TO CONSTRUCTOR
   my $num_lists = scalar @fxm1_and_fx_pvals;
   croak "number of pairs passed ($num_lists) not equal to number of tests" .
         "in 'new' constructor ($obj->{'num_tests'})"
         unless $num_lists == $obj->{'num_tests'};

#__ACCUMULATE LANCASTER'S MEAN CHI-SQUARED STATISTIC
   my ($chisq, $list_num) = (0, 0);
   foreach my $fxm1_and_fx_pair (@fxm1_and_fx_pvals) {
      $list_num++;
      my ($fxm1, $fx) = @{$fxm1_and_fx_pair};

   #__MAKE SURE BOTH ARE PVALS
      croak "'$fxm1' in cdf pair $list_num is not a p-val"
         unless &is_a_pval ($fxm1);
      croak "'$fx' in cdf pair $list_num is not a p-val"
         unless &is_a_pval ($fx);

   #__MAKE SURE THEY'RE ORDERED AS EXPECTED
      croak "cdf pair $list_num is not in ascending order"
         unless $fx > $fxm1;

   #__MEAN CORECTION
      $chisq += 2 * (1 - ($fx * log($fx) - $fxm1 * log($fxm1))/($fx - $fxm1));
   }

#__TRANSFORM: TWICE THE DEGREES OF FREEDOM
   my $dof = 2 * $obj->{'num_tests'};

#__NOW GET P-VAL FROM A CHI-SQUARE TEST
   my $pval = Statistics::Distributions::chisqrprob ($dof, $chisq);

#__RETURN P-VAL
   return $pval;
}

#  ============================================================
#  LANCASTER'S MEDIAN-CONTINUITY-CORRECTED CHI-SQUARE TRANSFORM
#  ============================================================

=head2 lancaster_median_corrected_transform

This method is based on the median value of the chi-squared transformed
statistic.

	my $pval = $obj->lancaster_median_corrected_transform (@cdf_pairs);

Its accuracy may sometimes be not quite as good as when using the
average, but the method is strictly defined for I<all> values of the
statistic.

=cut

sub lancaster_median_corrected_transform {
   my $obj = shift;
   my (@fxm1_and_fx_pvals) = @_;

#__NUMBER OF CDF PAIRS SHOULD BE SAME AS NUMBER OF PVALS PASSED TO CONSTRUCTOR
   my $num_lists = scalar @fxm1_and_fx_pvals;
   croak "number of pairs passed ($num_lists) not equal to number of tests" .
         "in 'new' constructor ($obj->{'num_tests'})"
         unless $num_lists == $obj->{'num_tests'};

#__ACCUMULATE LANCASTER'S MEAN CHI-SQUARED STATISTIC
   my ($chisq, $list_num) = (0, 0);
   foreach my $fxm1_and_fx_pair (@fxm1_and_fx_pvals) {
      $list_num++;
      my ($fxm1, $fx) = @{$fxm1_and_fx_pair};

   #__MAKE SURE BOTH ARE PVALS
      croak "'$fxm1' in cdf pair $list_num is not a p-val"
         unless &is_a_pval ($fxm1);
      croak "'$fx' in cdf pair $list_num is not a p-val"
         unless &is_a_pval ($fx);

   #__MAKE SURE THEY'RE ORDERED AS EXPECTED
      croak "cdf pair $list_num is not in ascending order"
         unless $fx > $fxm1;

   #__MEDIAN CORRECTION
      if ($fxm1) {
         $chisq -= 2 * log (($fx + $fxm1)/2);
      } else {
         $chisq += 2 * (1 - log ($fx));
      }
   }

#__TRANSFORM: TWICE THE DEGREES OF FREEDOM
   my $dof = 2 * $obj->{'num_tests'};

#__NOW GET P-VAL FROM A CHI-SQUARE TEST
   my $pval = Statistics::Distributions::chisqrprob ($dof, $chisq);

#__RETURN P-VAL
   return $pval;
}

#  ===========================================================
#  LANCASTER'S MIXED-CONTINUITY-CORRECTED CHI-SQUARE TRANSFORM
#  ===========================================================

=head2 lancaster_mixed_corrected_transform

This method is a mixture of both the mean and median
methods.
Specifically, mean correction is used wherever it
is well-defined, otherwise median correction is
used.

	my $pval = $obj->lancaster_mixed_corrected_transform (@cdf_pairs);

This will be a good way to handle certain
cases.

=cut

sub lancaster_mixed_corrected_transform {
   my $obj = shift;
   my (@fxm1_and_fx_pvals) = @_;

#__NUMBER OF CDF PAIRS SHOULD BE SAME AS NUMBER OF PVALS PASSED TO CONSTRUCTOR
   my $num_lists = scalar @fxm1_and_fx_pvals;
   croak "number of pairs passed ($num_lists) not equal to number of tests" .
         "in 'new' constructor ($obj->{'num_tests'})"
         unless $num_lists == $obj->{'num_tests'};

#__ACCUMULATE LANCASTER'S MEAN CHI-SQUARED STATISTIC
   my ($chisq, $list_num) = (0, 0);
   foreach my $fxm1_and_fx_pair (@fxm1_and_fx_pvals) {
      $list_num++;
      my ($fxm1, $fx) = @{$fxm1_and_fx_pair};

   #__MAKE SURE BOTH ARE PVALS
      croak "'$fxm1' in cdf pair $list_num is not a p-val"
         unless &is_a_pval ($fxm1);
      croak "'$fx' in cdf pair $list_num is not a p-val"
         unless &is_a_pval ($fx);

   #__MAKE SURE THEY'RE ORDERED AS EXPECTED
   #
   #  NOTE: WE ALLOW FOR EQUIVALENCE OF ADJACENT VALUES (WITHIN FLOATING-POINT
   #        PRECISION) FOR THOSE CASES WHERE THE CDF IS LOCALLY EXTREMELY
   #        ASYMPTOTIC

      croak "cdf pair $list_num is not in ascending order"
         if $fx < $fxm1;
   #     unless $fx > $fxm1;

   #__NO CORRECTION NEEDED IF VALS IDENTICAL WITHIN FLOATING-POINT PRECISION
      if ($fx == $fxm1) {
         $chisq -= 2 * log ($fx); # Fisher

   #__ELSE APPLY LANCASTER'S CONTINUITY CORRECTION (MIXED DEPENDING UPON VALS)
      } else {

      #__USE LANCASTER'S MEAN IF POSSIBLE
         if ($fxm1) {
            $chisq += 2 * (1 - ($fx * log($fx) - $fxm1 * log($fxm1))/($fx - $fxm1));
      #__OTHERWISE USE LANCASTER'S MEDIAN
         } else {
            $chisq += 2 * (1 - log ($fx));
         }
      }
   }

#__TRANSFORM: TWICE THE DEGREES OF FREEDOM
   my $dof = 2 * $obj->{'num_tests'};

#__NOW GET P-VAL FROM A CHI-SQUARE TEST
   my $pval = Statistics::Distributions::chisqrprob ($dof, $chisq);

#__RETURN P-VAL
   return $pval;
}

###############################################################################
#  END: CORRECTION PROCEDURES FOR DISCRETE DISTRIBUTIONS: LANCASTER'S MODELS  #
###############################################################################

################################################################################
##                                                                            ##
##                   S E M I - P R I V A T E   M E T H O D S                  ##
##                                                                            ##
##  methods that are not ordinarily called externally but can be if needed    ##
##  because they are cast according to the object-oriented interface          ##
##                                                                            ##
################################################################################

=head2 additional methods

The basic functionality of this package is encompassed in the methods described
above.
However, some lower-level functions can also sometimes be
useful.

=cut

#  ======================
#  EXACT_ENUM_ARBITRARY_2   2-distrib precursor of exact_enum_arbitrary
#  ======================   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

=head3 exact_enum_arbitrary_2

Hard-wired precursor of I<exact_enum_arbitrary> for 2
distributions.
Does no pre-checking, but may be useful for
comparing to the output of the general
program.

=cut

sub exact_enum_arbitrary_2 {
   my $obj = shift;
   my (@pvals_lists) = @_;
   my $pval = 0;

#__NUMBER OF LISTS SHOULD BE SAME AS NUMBER OF PVALS PASSED TO CONSTRUCTOR
   my $num_lists = scalar @pvals_lists;
   croak "number of lists passed ($num_lists) not equal to number of tests" .
         "in 'new' constructor ($obj->{'num_tests'})"
         unless $num_lists == $obj->{'num_tests'};
   croak "you must have exactly 2 tests" unless $obj->{'num_tests'} == 2;

#__TWO-LIST SPECIAL CASE
   my $list1 = $pvals_lists[0];
   my $list2 = $pvals_lists[1];

#__TRAVERSE LIST 1
   for (my $i = 0; $i <= $#{$list1}; $i++) {

   #__TAIL VALUE AND THE PROBABILITY OF THIS TAIL VALUE
      my $ptail1 = $list1->[$i];
      my $probability_of_ptail1;
      if ($i > 0) {
         $probability_of_ptail1 = $list1->[$i] - $list1->[$i-1];
      } else {
         $probability_of_ptail1 = $list1->[$i];
      }

   #__TRAVERSE LIST 2
      for (my $j = 0; $j <= $#{$list2}; $j++) {

      #__TAIL VALUE AND THE PROBABILITY OF THIS TAIL VALUE
         my $ptail2 = $list2->[$j];
         my $probability_of_ptail2;
         if ($j > 0) {
            $probability_of_ptail2 = $list2->[$j] - $list2->[$j-1];
         } else {
            $probability_of_ptail2 = $list2->[$j];
         }

      #__PRODUCT OF TAIL VALUES AND THE PROBABILITY OF THIS PRODUCT
         my $product_tail_pval = $ptail1 * $ptail2;
         my $probability_of_product_tail_pval = $probability_of_ptail1 * $probability_of_ptail2;

      #__TALLY TO RESULTANT COMPOUND P-VAL IF SIGNIFICANT
         $pval += $probability_of_product_tail_pval
            if $product_tail_pval <= $obj->{'big_q'};
      }
   }

#__RETURN P-VAL
   return $pval;
}

#  ======================
#  EXACT_ENUM_ARBITRARY_3   3-distrib precursor of exact_enum_arbitrary
#  ======================   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

=head3 exact_enum_arbitrary_3

Hard-wired precursor of I<exact_enum_arbitrary> for 3
distributions.
Does no pre-checking, but may be useful for
comparing to the output of the general
program.

=cut

sub exact_enum_arbitrary_3 {
   my $obj = shift;
   my (@pvals_lists) = @_;
   my $pval = 0;

#__NUMBER OF LISTS SHOULD BE SAME AS NUMBER OF PVALS PASSED TO CONSTRUCTOR
   my $num_lists = scalar @pvals_lists;
   croak "number of lists passed ($num_lists) not equal to number of tests" .
         "in 'new' constructor ($obj->{'num_tests'})"
         unless $num_lists == $obj->{'num_tests'};
   croak "you must have exactly 3 tests" unless $obj->{'num_tests'} == 3;

#__THREE-LIST SPECIAL CASE
   my $list1 = $pvals_lists[0];
   my $list2 = $pvals_lists[1];
   my $list3 = $pvals_lists[2];

#__TRAVERSE LIST 1
   for (my $i = 0; $i <= $#{$list1}; $i++) {

   #__TAIL VALUE AND THE PROBABILITY OF THIS TAIL VALUE
      my $ptail1 = $list1->[$i];
      my $probability_of_ptail1;
      if ($i > 0) {
         $probability_of_ptail1 = $list1->[$i] - $list1->[$i-1];
      } else {
         $probability_of_ptail1 = $list1->[$i];
      }

   #__TRAVERSE LIST 2
      for (my $j = 0; $j <= $#{$list2}; $j++) {

      #__TAIL VALUE AND THE PROBABILITY OF THIS TAIL VALUE
         my $ptail2 = $list2->[$j];
         my $probability_of_ptail2;
         if ($j > 0) {
            $probability_of_ptail2 = $list2->[$j] - $list2->[$j-1];
         } else {
            $probability_of_ptail2 = $list2->[$j];
         }

      #__TRAVERSE LIST 3
         for (my $k = 0; $k <= $#{$list3}; $k++) {

         #__TAIL VALUE AND THE PROBABILITY OF THIS TAIL VALUE
            my $ptail3 = $list3->[$k];
            my $probability_of_ptail3;
            if ($k > 0) {
               $probability_of_ptail3 = $list3->[$k] - $list3->[$k-1];
            } else {
               $probability_of_ptail3 = $list3->[$k];
            }

         #__PRODUCT OF TAIL VALUES AND THE PROBABILITY OF THIS PRODUCT
            my $product_tail_pval = $ptail1 * $ptail2 * $ptail3;
            my $probability_of_product_tail_pval = $probability_of_ptail1 * $probability_of_ptail2 * $probability_of_ptail3;

         #__TALLY TO RESULTANT COMPOUND P-VAL IF SIGNIFICANT
            $pval += $probability_of_product_tail_pval
               if $product_tail_pval <= $obj->{'big_q'};
         }
      }
   }

#__RETURN P-VAL
   return $pval;
}

#  ============
#  BINOM COEFFS   calculate binomial coefficients
#  ============   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

=head3 binom_coeffs

Calculates the binomial coefficients needed
in the binomial (convolution) approximate
solution.

	$pmobj->binom_coeffs;

The internal data structure is essentially the
symmetric half of the appropriately-sized Pascal
triangle.
Considerable memory is saved by not storing the full
triangle.

=cut

### This is called automatically, if necessary, before the probability
### calculation, so there is not typically a need to call it
### manually.

sub binom_coeffs {
   my $obj = shift;
   croak "need to know most populous list first"
      unless defined $obj->{'most_populous_list'};
   carp "already have binomial coefficients" if defined $obj->{'binom_coeffs'};

#__SET-UP FOR COEFFICIENTS
   my $bin_coeffs = [1];
   $obj->{'binom_coeffs'} = [];
   push (@{$obj->{'binom_coeffs'}}, $bin_coeffs);

#__CALCULATE COEFFICIENTS UP TO THAT REQUIRED BY THE MOST POPULOUS LIST
   for (my $i = 1; $i <= $obj->{'most_populous_list'}; $i++) {
      $bin_coeffs = &next_bin_coeff_row ($i, $bin_coeffs);
      push (@{$obj->{'binom_coeffs'}}, $bin_coeffs);
   }
}

################################################################################
##                                                                            ##
##            M E T H O D S   M E A N T   T O   B E   P R I V A T E           ##
##                                                                            ##
##  methods that cannot be called in a contextually meaningful way from an    ##
##  external application using the object-oriented interface                  ##
##                                                                            ##
################################################################################

#  ==========================================================================
#  ROUTINE FOR DETERMINING WHETHER A VARIABLE REPRESENTS A LEGITIMATE P-VALUE
#  ==========================================================================

sub is_a_pval {
   my ($val) = @_;
# print "VAL IS '$val'\n";

#__MUST BE A FLOAT (REGEXP: PERL COOKBOOK CHAP 2.1) & MUST BE BOUNDED BY 0 AND 1
   if ($val =~ /^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/
      && $val >= 0 && $val <= 1) {
      return 1;
##################
#    if ($val =~ /^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/) {
#       print "VAL '$val' IS REAL\n";
#       if ($val >= 0) {
#          print "  VAL '$val' >= 0\n";
#          if ($val <= 1) {
#             print "    VAL '$val' <= 1\n";
#             return 1;
#          } else {
#             print "    VAL '$val' NOT <= 1\n";
# # chop $val;
# # if ($val <= 1) {
# #   print "      VAL '$val' NOW <= 1\n";
# # } else {
# #   print "      VAL '$val' STILL NOT <= 1\n";
# # }
#             return 0;
#          }
#       } else {
#          print "  VAL '$val' NOT >= 0\n";
#          return 0;
#       }
##################

#__ELSE IT IS NOT A PVAL
   } else {
#     print "VAL '$val' IS NOT REAL\n";
      return 0;
   }
}

#  ================================================================
#  RECURSIVE EXACT PVAL CALCULATION FOR ARITRARY TEST DISTRIBUTIONS
#  ================================================================

sub _recursive_exact_enum_arbitrary {
   my $obj = shift;
   my ($list_of_pvals_lists, $prev_recursion_level,
       $product_tail_pval, $probability_of_product_tail_pval) = @_;

#__THE CURRENT LIST
   my $current_list = $prev_recursion_level;
   my $list = $list_of_pvals_lists->[$current_list];

#__THE CURRENT LEVEL OF RECURSION
   my $curr_recursion_level = $prev_recursion_level + 1;
   my $local_pval = 0;

#__LOOP AT THE CURRENT RECURSION LEVEL
   for (my $i = 0; $i <= $#{$list}; $i++) {

   #__TAIL VALUE AND THE PROBABILITY OF THIS TAIL VALUE
      my $ptail = $list->[$i];
      my $probability_of_ptail;
      if ($i > 0) {
         $probability_of_ptail = $list->[$i] - $list->[$i-1];
      } else {
         $probability_of_ptail = $list->[$i];
      }

   #__RECURSE FURTHER IF NECESSARY
      if ($curr_recursion_level < $obj->{'num_tests'}) {

      #__RECURSE AND ACCUMULATE P-VAL CONTRIBUTIONS
         $local_pval +=
            $obj->_recursive_exact_enum_arbitrary (
               $list_of_pvals_lists,
               $curr_recursion_level,
               $product_tail_pval * $ptail,
               $probability_of_product_tail_pval * $probability_of_ptail
            );

   #__ELSE WE'RE "AT THE BOTTOM" SO TAKE THE NECESSARY PRODUCT
      } else {

      #__FINAL PRODUCTS
         my $local_product_tail_pval = $product_tail_pval * $ptail;
         my $local_probability_of_product_tail_pval =
	    $probability_of_product_tail_pval * $probability_of_ptail;

      #__TALLY IF CONDITION IS SATISFIED
         if ($local_product_tail_pval <= $obj->{'big_q'}) {
            $local_pval += $local_probability_of_product_tail_pval;

      #__ELSE SKIP REST OF THIS DISTRIBUTION CUZ SUCCEEDING VALS ARE ALL LARGER
         } else { 
            last; 
         }
      }
   }

#__RETURN RESULT TO THE ANTECEDENT LEVEL
   return $local_pval;
}

#  ==================
#  NEXT BIN COEFF ROW   compute 1/2 row i of binomial coefficients given row i-1
#  ==================   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

sub next_bin_coeff_row {
   my ($i, $im1_row) = @_;

#__FIRST ELEMENT I,0 IN ALL ROWS DEFINED AS UNITY
   my $next_row = [1];

#__IF I > 1 COMPUTE REST OF NEXT (I) ROW USING PASCAL TRIANGLE ON PREV (I-1) ROW
   if ($i > 1) {

   #__COMPUTE STOPPING POINT BASED ON SYMMETRY
      my $i_mirror = $i / 2;
      my $i_end = int $i_mirror;

   #__FILL IN INTERMEDIATE ELEMENTS I,1 TO I,I_END USING PASCALS TRIANGLE
      for (my $iposition = 1; $iposition <= $i_end; $iposition++) {

      #__START WITH "LEFT SIDE" VAL OF PREVIOUS ROW
         my $element = $im1_row->[$iposition-1];

      #__COMPUTE NEXT ELEMENT USING THE PASCAL TRIANGLE METHOD
         if ($iposition == $i_mirror) {
            $element += $im1_row->[$iposition-1];
         } else {
            $element += $im1_row->[$iposition];
         }

      #__SAVE
         push (@{$next_row}, $element);
      }
   }

#__RETURN LIST OF HALF SYMETRIC NEXT ROW OF BINOMIAL COEFFICIENTS
   return $next_row;
}

# ========
# BINCOEFF   return binomial coefficient using 1/2 symetric stored table
# ========   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#  RETURNS C_{$i_top, $k_bottom}

sub bincoeff {
   my $obj = shift;
   my ($i_top, $k_bottom) = @_;

#__SYMMETRY CUTOFF IS HALF THE VALUE OF THE I'TH ROW
   my $i_half = $i_top / 2;

#__IF I,K IS WITHIN THE STORED SYMMETRIC HALF OF TRIANGLE THEN SIMPLY RETURN VAL
   if ($k_bottom <= $i_half) {
      return $obj->{'binom_coeffs'}->[$i_top]->[$k_bottom];

#__ELSE COMPUTE SYMMETRIC REFLECTION OF NON-STORED COMPONENT AND RETURN THAT VAL
   } else {
      my $k_reflect = $i_top - $k_bottom;
      return $obj->{'binom_coeffs'}->[$i_top]->[$k_reflect];
   }
}

################################################################################
##                                                                            ##
##             T R A I L I N G   P O D   D O C U M E N T A T I O N            ##
##                                                                            ##
################################################################################

################################################################################
##                                                                            ##
##                                -  E N D  -                                 ##
##                                                                            ##
################################################################################

1;