This file is indexed.

/usr/share/perl5/Genome/Model/Tools/Music/Smg.pm.R is in libgenome-model-tools-music-perl 0.04-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#############################################
### Functions for testing significance of ###
### per-gene categorized mutation rates   ###
#############################################

# Fetch command line arguments
args = commandArgs();
input_file = as.character(args[4]);
output_file = as.character(args[5]);
run_type = as.character(args[6]);
processors = as.numeric(args[7]);
skip_low_mr_genes = as.numeric(args[8]);

# See if we have the necessary packages installed to run in parallel
is.installed <- function( mypkg ) is.element( mypkg, installed.packages()[,1] );
parallel = FALSE;
if( processors > 1 & is.installed( 'doMC' ) & is.installed( 'foreach' )) {
    parallel = TRUE;
}

gethist <- function( xmax, n, p, ptype = "positive_log" ) {
    dbinom( 0:xmax, n, p ) -> ps;
    ps = ps[ps > 0];
    lastp = 1 - sum( ps );
    if( lastp > 0 ) ps = c( ps, lastp );
    if( ptype == "positive_log" ) ps = -log( ps );
    return( ps );
}

binit <- function( x, hmax, bin, dropbin = T ) {
    bs = as.integer( x / bin );
    bs[bs > hmax/bin] = hmax / bin;
    bs[is.na( bs )] = hmax / bin;
    tapply( exp(-x), as.factor( bs ), sum ) -> bs;
    bs = bs[bs>0];
    bs = -log( bs );
    if( dropbin ) bs = as.numeric( bs );
    return( bs );
}

convolute_b <- function( a, b ) {
    tt = NULL;
    for( j in b ) { tt = c( tt, ( a + j )); }
    return( tt );
}

mut_class_test <- function( x, xmax = 100, hmax = 25, bin = 0.001 ) {
    x = as.data.frame( x );
    colnames( x ) = c( "Class", "n", "x", "e" );
    x$p = NA; x$lh0 = NA; x$lh1 = NA;
    tot_muts = x[( x$Class == "Overall" ),]$x;
    tot_bps = x[( x$Class == "Overall" ),]$n;
    overall_bmr = x[( x$Class == "Overall" ),]$e;

    # Remove the row containing overall MR and BMR because we don't want it to be a tested category
    x = x[( x$Class != "Overall" ),];

    # If user wants to skip testing genes with low MRs, measure the relevant MRs of this gene
    gene_mr = 0; indel_mr = 0; indel_bmr = 0; trunc_mr = 0; trunc_bmr = 0;
    if( skip_low_mr_genes == 1 ) {
        if( tot_bps > 0 ) { gene_mr = tot_muts / tot_bps; }
        if( x[( x$Class == "Indels" ),]$n > 0 ) { indel_mr = x[( x$Class == "Indels" ),]$x / x[( x$Class == "Indels" ),]$n; }
        indel_bmr = x[( x$Class == "Indels" ),]$e;
        if( nrow( x[( x$Class == "Truncations" ),] ) > 0 ) {
            if( x[( x$Class == "Truncations" ),]$n > 0 ) { trunc_mr = x[( x$Class == "Truncations" ),]$x / x[( x$Class == "Truncations" ),]$n; }
            trunc_bmr = x[( x$Class == "Truncations" ),]$e;
        }
    }

    # Set pvals of 1 for genes with zero mutations, zero covered bps, or zero overall BMR
    if( tot_muts <= 0 | tot_bps <= 0 | overall_bmr <= 0 ) {
        p.fisher = 1; p.lr = 1; p.convol = 1; qc = 1;
    }
    # If user wants to skip testing genes with low MRs, give them pvals of 1
    else if( skip_low_mr_genes == 1 & gene_mr < overall_bmr & indel_mr <= indel_bmr & trunc_mr <= trunc_bmr ) {
        p.fisher = 1; p.lr = 1; p.convol = 1; qc = 1;
    }
    else {
        # Skip testing mutation categories that have zero BMR, or if this gene has #muts >= #covd bps
        x = x[( x$n > 0 & x$n > x$x & x$e > 0 ),];
        rounded_mut_cnts = round(x$x);
        for( i in 1:nrow(x) ) {
            x$p[i] = binom.test( rounded_mut_cnts[i], x$n[i], x$e[i], alternative = "greater" )$p.value;
            x$lh0[i] = dbinom( rounded_mut_cnts[i], x$n[i], x$e[i], log = T );
            x$lh1[i] = dbinom( rounded_mut_cnts[i], x$n[i], x$x[i] / x$n[i], log = T );
            ni = x$n[i]; ei = x$e[i];
            gethist( xmax, ni, ei, ptype = "positive_log" ) -> bi;
            binit( bi, hmax, bin ) -> bi;
            if( i == 1 ) { hist0 = bi; }
            if( i > 1 & i < nrow(x) ) { hist0 = convolute_b( hist0, bi ); binit( hist0, hmax, bin ) -> hist0; }
            if( i == nrow(x)) { hist0 = convolute_b( hist0, bi ); }
        }

        # Fisher combined p-value
        q = ( -2 ) * sum( log( x$p ));
        df = 2 * length( x$p );
        p.fisher = 1 - pchisq( q, df );

        # Likelihood ratio test
        q = 2 * ( sum( x$lh1 ) - sum( x$lh0 ));
        df = sum( x$lh1 != 0 );
        if( df > 0 ) p.lr = 1 - pchisq( q, df );
        if( df == 0 ) p.lr = 1;

        # Convolution test
        bx = -sum( x[,"lh0"] );
        p.convol = sum( exp( -hist0[hist0>=bx] ));
        qc = sum( exp( -hist0 ));
    }

    # Return results
    rst = list( x = cbind( x, tot_muts, p.fisher, p.lr, p.convol, qc ));
    return( rst );
}

dotest <- function( idx, mut, zgenes ) {
    step = round( length( zgenes ) / processors );
    start = step * ( idx - 1 ) + 1;
    stop = step * idx;
    if( idx == processors ) { stop = length( zgenes ); }
    tt = NULL;
    for( Gene in zgenes[start:stop] ) {
        mutgi = mut[mut$Gene==Gene,];
        mut_class_test( mutgi[,2:5], hmax = 25, bin = 0.001 ) -> z;
        tt = rbind( tt, cbind( Gene, unique( z$x[,(9:11)] )));
    }
    return( tt );
}

combineresults <- function( a, b ) {
    return( rbind( a, b ));
}

smg_test <- function( gene_mr_file, pval_file ) {
    read.delim( gene_mr_file ) -> mut;
    colnames( mut ) = c( "Gene", "Class", "Bases", "Mutations", "BMR" );
    mut$BMR = as.numeric( as.character( mut$BMR ));
    tt = NULL;

    # Run in parallel if we have the needed packages, or fall back to the old way
    if( parallel ) {
        library( 'doMC' );
        library( 'foreach' );
        registerDoMC();
        cat( "Parallel backend installed - splitting across", processors, "cores\n" );

        options( cores = processors );
        mcoptions <- list( preschedule = TRUE );
        zgenes = unique( as.character( mut$Gene ));
        tt = foreach( idx = 1:processors, .combine="combineresults", .options.multicore = mcoptions ) %dopar% {
            dotest( idx, mut, zgenes );
        }
        write.table( tt, file = pval_file, quote = FALSE, row.names = F, sep = "\t" );
    }
    else {
        for( Gene in unique( as.character( mut$Gene ))) {
            mutgi = mut[mut$Gene==Gene,];
            mut_class_test( mutgi[,2:5], hmax = 25, bin = 0.001 ) -> z;
            tt = rbind( tt, cbind( Gene, unique( z$x[,(9:11)] )));
        }
        write.table( tt, file = pval_file, quote = FALSE, row.names = F, sep = "\t" );
    }
}

smg_fdr <- function( pval_file, fdr_file ) {
    read.table( pval_file, header = T, sep = "\t" ) -> x;

    #Calculate FDR measure and write FDR output
    p.adjust( x[,2], method="BH" ) -> fdr.fisher;
    p.adjust( x[,3], method="BH" ) -> fdr.lr;
    p.adjust( x[,4], method="BH" ) -> fdr.convol;
    x = cbind( x, fdr.fisher, fdr.lr, fdr.convol );
    #Rank SMGs starting with lowest convolution test FDR, and then by Likelihood Ratio FDR
    x = x[order( fdr.convol, fdr.lr ),];
    write.table( x, file = fdr_file, quote = FALSE, row.names = F, sep = "\t" );
}

# Figure out which function needs to be invoked and call it
if( run_type == "smg_test" ) { smg_test( input_file, output_file ); }
if( run_type == "calc_fdr" ) { smg_fdr( input_file, output_file ); }