This file is indexed.

/usr/share/perl5/Math/PlanePath/PythagoreanTree.pm is in libmath-planepath-perl 123-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
# Copyright 2011, 2012, 2013, 2014, 2015, 2016 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=PythagoreanTree --all --scale=3

# http://sunilchebolu.wordpress.com/pythagorean-triples-and-the-integer-points-on-a-hyperboloid/

# http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/pythagtriple.pdf
#
# http://www.math.ou.edu/~dmccullough/teaching/pythagoras1.pdf
# http://www.math.ou.edu/~dmccullough/teaching/pythagoras2.pdf
#
# http://www.microscitech.com/pythag_eigenvectors_invariants.pdf
#


package Math::PlanePath::PythagoreanTree;
use 5.004;
use strict;
use Carp 'croak';

use vars '$VERSION', '@ISA';
$VERSION = 123;
use Math::PlanePath;
*_divrem = \&Math::PlanePath::_divrem;
*_sqrtint = \&Math::PlanePath::_sqrtint;
@ISA = ('Math::PlanePath');

#use List::Util 'min','max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';
use Math::PlanePath::GrayCode;

# uncomment this to run the ### lines
# use Smart::Comments;

use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant tree_num_children_list => (3); # complete ternary tree
use constant tree_n_to_subheight => undef; # complete tree, all infinity

use constant parameter_info_array =>
  [ { name            => 'tree_type',
      share_key       => 'tree_type_uadfb',
      display         => 'Tree Type',
      type            => 'enum',
      default         => 'UAD',
      choices         => ['UAD','UArD','FB','UMT'],
    },
    { name            => 'coordinates',
      share_key       => 'coordinates_abcpqsm',
      display         => 'Coordinates',
      type            => 'enum',
      default         => 'AB',
      choices         => ['AB','AC','BC','PQ', 'SM','SC','MC',
                          # 'BA'
                          # 'UV',  # q from x=y diagonal down at 45-deg
                          # 'RS','ST',  # experimental
                         ],
    },
    { name            => 'digit_order',
      display         => 'Digit Order',
      type            => 'enum',
      default         => 'HtoL',
      choices         => ['HtoL','LtoH'],
    },
  ];

{
  my %UAD_coordinates_always_right = (PQ => 1,
                                      AB => 1,
                                      AC => 1);
  sub turn_any_left {
    my ($self) = @_;
    return ! ($self->{'tree_type'} eq 'UAD'
              && $UAD_coordinates_always_right{$self->{'coordinates'}});
  }
}
{
  my %UAD_coordinates_always_left = (BC => 1);
  sub turn_any_right {
    my ($self) = @_;
    return ! ($self->{'tree_type'} eq 'UAD'
              && $UAD_coordinates_always_left{$self->{'coordinates'}});
  }
}
{
  my %UMT_coordinates_any_straight = (BC => 1,  # UMT at N=5
                                      PQ => 1); # UMT at N=5
  sub turn_any_straight {
    my ($self) = @_;
    return ($self->{'tree_type'} eq 'UMT'
            && $UMT_coordinates_any_straight{$self->{'coordinates'}});
  }
}


#------------------------------------------------------------------------------
{
  my %coordinate_minimum = (A => 3,
                            B => 4,
                            C => 5,
                            P => 2,
                            Q => 1,
                            S => 3,
                            M => 4,
                           );
  sub x_minimum {
    my ($self) = @_;
    return $coordinate_minimum{substr($self->{'coordinates'},0,1)};
  }
  sub y_minimum {
    my ($self) = @_;
    return $coordinate_minimum{substr($self->{'coordinates'},1)};
  }
}
{
  my %diffxy_minimum = (PQ => 1, # octant X>=Y+1 so X-Y>=1
                       );
  sub diffxy_minimum {
    my ($self) = @_;
    return $diffxy_minimum{$self->{'coordinates'}};
  }
}
{
  my %diffxy_maximum = (AC => -2, # C>=A+2 so X-Y<=-2
                        BC => -1, # C>=B+1 so X-Y<=-1
                        SM => -1, # S<M so X-Y<=-1
                        SC => -2, # S<M<C so S-C<=-2
                        MC => -1, # M<C so M-C<=-1
                       );
  sub diffxy_maximum {
    my ($self) = @_;
    return $diffxy_maximum{$self->{'coordinates'}};
  }
}
{
  my %absdiffxy_minimum = (PQ => 1,
                           AB => 1, # X=Y never occurs
                           BA => 1, # X=Y never occurs
                           AC => 2, # C>=A+2 so abs(X-Y)>=2
                           BC => 1,
                           SM => 1, # X=Y never occurs
                           SC => 2, # X<=Y-2
                           MC => 1, # X=Y never occurs
                          );
  sub absdiffxy_minimum {
    my ($self) = @_;
    return $absdiffxy_minimum{$self->{'coordinates'}};
  }
}
use constant gcdxy_maximum => 1;  # no common factor

{
  my %absdx_minimum = ('AB,UAD' => 2,
                       'AB,FB'  => 2,
                       'AB,UMT' => 2,

                       'AC,UAD' => 2,
                       'AC,FB'  => 2,
                       'AC,UMT' => 2,

                       'BC,UAD' => 4,  # at N=37
                       'BC,FB'  => 4,  # at N=2 X=12,Y=13
                       'BC,UMT' => 4,  # at N=2 X=12,Y=13

                       'PQ,UAD' => 0,
                       'PQ,FB'  => 0,
                       'PQ,UMT'  => 0,

                       'SM,UAD' => 1,
                       'SM,FB'  => 1,
                       'SM,UMT' => 2,

                       'SC,UAD' => 1,
                       'SC,FB'  => 1,
                       'SC,UMT' => 1,

                       'MC,UAD' => 3,
                       'MC,FB'  => 3,
                       'MC,UMT' => 1,
                      );
  sub absdx_minimum {
    my ($self) = @_;
    return $absdx_minimum{"$self->{'coordinates'},$self->{'tree_type'}"} || 0;
  }
}
{
  my %absdy_minimum = ('AB,UAD' => 4,
                       'AB,FB'  => 4,
                       'AB,UMT' => 4,

                       'AC,UAD' => 4,
                       'AC,FB'  => 4,
                       'BC,UAD' => 4,
                       'BC,FB'  => 4,
                       'PQ,UAD' => 0,
                       'PQ,FB'  => 1,

                       'SM,UAD' => 3,
                       'SM,FB'  => 3,
                       'SM,UMT' => 1,

                       'SC,UAD' => 4,
                       'SC,FB'  => 4,
                       'MC,UAD' => 4,
                       'MC,FB'  => 4,
                      );
  sub absdy_minimum {
    my ($self) = @_;
    return $absdy_minimum{"$self->{'coordinates'},$self->{'tree_type'}"} || 0;
  }
}

{
  my %dir_minimum_dxdy = (# AB apparent minimum dX=16,dY=8
                          'AB,UAD' => [16,8],
                          'AC,UAD' => [1,1],  # it seems
                          # 'BC,UAD' => [1,0], # infimum
                          # 'SM,UAD' => [1,0], # infimum
                          # 'SC,UAD' => [1,0], # N=255 dX=7,dY=0
                          # 'MC,UAD' => [1,0], # infimum

                          # 'SM,FB' => [1,0], # infimum
                          # 'SC,FB' => [1,0], # infimum
                          # 'SM,FB' => [1,0], # infimum

                          'AB,UMT' => [6,12], # it seems

                          # N=ternary 1111111122 dx=118,dy=40
                          # in general dx=3*4k-2 dy=4k
                          'AC,UMT' => [3,1], # infimum
                          #
                          # 'BC,UMT' => [1,0], # N=31 dX=72,dY=0
                          'PQ,UMT' => [1,1], # N=1
                          'SM,UMT' => [1,0],  # infiumum dX=big,dY=3
                          'SC,UMT' => [3,1],  # like AC
                          # 'MC,UMT' => [1,0],  # at N=31
                         );
  sub dir_minimum_dxdy {
    my ($self) = @_;
    return @{$dir_minimum_dxdy{"$self->{'coordinates'},$self->{'tree_type'}"}
               || [1,0] };
  }
}
{
  # AB apparent maximum dX=-6,dY=-12 at N=3
  # AC apparent maximum dX=-6,dY=-12 at N=3 same
  # PQ apparent maximum dX=-1,dY=-1
  my %dir_maximum_dxdy = ('AB,UAD'   => [-6,-12],
                          'AC,UAD'   => [-6,-12],
                          # 'BC,UAD' => [0,0],
                          'PQ,UAD'   => [-1,-1],
                          # 'SM,UAD' => [0,0],   # supremum
                          # 'SC,UAD' => [0,0],   # supremum
                          # 'MC,UAD' => [0,0],   # supremum

                          # 'AB,FB'  => [0,0],
                          # 'AC,FB'  => [0,0],
                          'BC,FB'    => [1,-1],
                          # 'PQ,FB'  => [0,0],
                          # 'SM,FB'  => [0,0],   # supremum
                          # 'SC,FB'  => [0,0],   # supremum
                          # 'MC,FB'  => [0,0],   # supremum

                          # N=ternary 1111111122 dx=118,dy=-40
                          # in general dx=3*4k-2 dy=-4k
                          'AB,UMT' => [3,-1], # supremum
                          #
                          'AC,UMT' => [-10,-20], # at N=9 apparent maximum
                          # 'BC,UMT' => [0,0],  # apparent approach
                          'PQ,UMT' => [1,-1], # N=2
                          # 'SM,UMT' => [0,0],  # supremum dX=big,dY=-1
                          'SC,UMT' => [-3,-5], # apparent approach
                          # 'MC,UMT' => [0,0], # supremum dX=big,dY=-small
                         );
  sub dir_maximum_dxdy {
    my ($self) = @_;
    return @{$dir_maximum_dxdy{"$self->{'coordinates'},$self->{'tree_type'}"}
               || [0,0]};
  }
}

#------------------------------------------------------------------------------

sub _noop {
  return @_;
}
my %xy_to_pq = (AB => \&_ab_to_pq,
                AC => \&_ac_to_pq,
                BC => \&_bc_to_pqa, # ignoring extra $a return
                PQ => \&_noop,
                SM => \&_sm_to_pq,
                SC => \&_sc_to_pq,
                MC => \&_mc_to_pq,
                UV => \&_uv_to_pq,
                RS => \&_rs_to_pq,
                ST => \&_st_to_pq,
               );
my %pq_to_xy = (AB => \&_pq_to_ab,
                AC => \&_pq_to_ac,
                BC => \&_pq_to_bc,
                PQ => \&_noop,
                SM => \&_pq_to_sm,
                SC => \&_pq_to_sc,
                MC => \&_pq_to_mc,
                UV => \&_pq_to_uv,
                RS => \&_pq_to_rs,
                ST => \&_pq_to_st,
               );

my %tree_types = (UAD  => 1,
                  UArD => 1,
                  FB   => 1,
                  UMT  => 1);
my %digit_orders = (HtoL  => 1,
                    LtoH => 1);
sub new {
  my $self = shift->SUPER::new (@_);
  {
    my $digit_order = ($self->{'digit_order'} ||= 'HtoL');
    $digit_orders{$digit_order}
      || croak "Unrecognised digit_order option: ",$digit_order;
  }
  {
    my $tree_type = ($self->{'tree_type'} ||= 'UAD');
    $tree_types{$tree_type}
      || croak "Unrecognised tree_type option: ",$tree_type;
  }
  {
    my $coordinates = ($self->{'coordinates'} ||= 'AB');
    $self->{'xy_to_pq'} = $xy_to_pq{$coordinates}
      || croak "Unrecognised coordinates option: ",$coordinates;
    $self->{'pq_to_xy'} = $pq_to_xy{$coordinates};
  }
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### PythagoreanTree n_to_xy(): $n

  if ($n < 1) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  {
    my $int = int($n);
    if ($n != $int) {
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
  }

  return &{$self->{'pq_to_xy'}}(_n_to_pq($self,$n));
}

# maybe similar n_to_rsquared() as C^2=(P^2+Q^2)^2
sub n_to_radius {
  my ($self, $n) = @_;

  if (($self->{'coordinates'} eq 'AB'
       || $self->{'coordinates'} eq 'BA'
       || $self->{'coordinates'} eq 'SM')
      && $n == int($n)) {
    if ($n < 1) { return undef; }
    if (is_infinite($n)) { return $n; }
    my ($p,$q) = _n_to_pq($self,$n);
    return $p*$p + $q*$q;  # C=P^2+Q^2
  }

  return $self->SUPER::n_to_radius($n);
}

sub _n_to_pq {
  my ($self, $n) = @_;

  my $ndigits = _n_to_digits_lowtohigh($n);
  ### $ndigits

  if ($self->{'tree_type'} eq 'UArD') {
    Math::PlanePath::GrayCode::_digits_to_gray_reflected($ndigits,3);
    ### gray: $ndigits
  }
  if ($self->{'digit_order'} eq 'HtoL') {
    @$ndigits = reverse @$ndigits;
    ### reverse: $ndigits
  }

  my $zero = $n * 0;

  my $p = 2 + $zero;
  my $q = 1 + $zero;

  if ($self->{'tree_type'} eq 'FB') {
    ### FB ...

    foreach my $digit (@$ndigits) {  # high to low, possibly $digit=undef
      ### $p
      ### $q
      ### $digit

      if ($digit) {
        if ($digit == 1) {
          $q = $p-$q;                   # (2p, p-q)  M2
          $p *= 2;
        } else {
          # ($p,$q) = (2*$p, $p+$q);
          $q += $p;                     # (p+q, 2q)  M3
          $p *= 2;
        }
      } else { # $digit == 0
        # ($p,$q) = ($p+$q, 2*$q);
        $p += $q;                       # (p+q, 2q)  M1
        $q *= 2;
      }
    }
  } elsif ($self->{'tree_type'} eq 'UMT') {
    ### UMT ...

    foreach my $digit (@$ndigits) {  # high to low, possibly $digit=undef
      ### $p
      ### $q
      ### $digit

      if ($digit) {
        if ($digit == 1) {
          $q = $p-$q;                 # (2p, p-q)  M2
          $p *= 2;
        } else { # $digit == 2
          $p += 3*$q;                 # T
          $q *= 2;
        }
      } else { # $digit == 0
        # ($p,$q) = ($p+$q, 2*$q);
        ($p,$q) = (2*$p-$q, $p);      # "U" = (2p-q, p)
      }
    }
  } else {
    ### UAD or UArD ...
    ### assert: $self->{'tree_type'} eq 'UAD' || $self->{'tree_type'} eq 'UArD'

    # # Could optimize high zeros as repeated U
    # # high zeros as repeated U: $depth-scalar(@$ndigits)
    # # U^0 = p,    q
    # # U^1 = 2p-q, p          eg. P=2,Q=1 is 2*2-1,2 = 3,2
    # # U^2 = 3p-2q, 2p-q      eg. P=2,Q=1 is 3*2-2*1,2*2-1 = 4,3
    # # U^3 = 4p-3q, 3p-2q
    # # U^k = (k+1)p-kq, kp-(k-1)q   for k>=2
    # #     = p + k*(p-q), k*(p-q)+q
    # # and with initial p=2,q=1
    # # U^k = 2+k, 1+k
    # #
    # $q = $depth - $#ndigits + $zero;  # count high zeros + 1
    # $p = $q + 1 + $zero;

    foreach my $digit (@$ndigits) {  # high to low, possibly $digit=undef
      ### $p
      ### $q
      ### $digit

      if ($digit) {
        if ($digit == 1) {
          ($p,$q) = (2*$p+$q, $p);      # "A" = (2p+q, p)
        } else {
          $p += 2*$q;                   # "D" = (p+2q, q)
        }
      } else { # $digit==0
        ($p,$q) = (2*$p-$q, $p);        # "U" = (2p-q, p)
      }
    }

  }

  ### final pq: "$p, $q"

  return ($p, $q);
}

# _n_to_digits_lowtohigh() returns an arrayref $ndigits which is a list of
# ternary digits 0,1,2 from low to high which are the position of $n within
# its row of the tree.
# The length of the array is the depth.
#
# depth N  N%3      2*N-1   (N-2)/3*2+1
#   0   1   1         1         1/3
#   1   2   2         3          1
#   2   5   2         9          3
#   3   14  2        27          9
#   4   41  2        81         27       28 + (28/2-1) = 41
#
# (N-2)/3*2+1 rounded down to pow=3^k gives depth=k+1 and base=pow+(pow+1)/2
# is the start of the row base=1,2,5,14,41 etc.
#
# An easier calculation is 2*N-1 rounded down to pow=3^d gives depth=d and
# base=2*pow-1, but 2*N-1 and 2*pow-1 might overflow an integer.  Though
# just yet round_down_pow() goes into floats and so doesn't preserve 64-bit
# integer.  So the technique here helps 53-bit float integers, but not right
# up to 64-bits.
#
sub _n_to_digits_lowtohigh {
  my ($n) = @_;
  ### _n_to_digits_lowtohigh(): $n

  my @ndigits;
  if ($n >= 2) {
    my ($pow) = _divrem($n-2, 3);
    ($pow, my $depth) = round_down_pow (2*$pow+1, 3);
    ### $depth
    ### base: $pow + ($pow+1)/2
    ### offset: $n - $pow - ($pow+1)/2
    @ndigits = digit_split_lowtohigh ($n - $pow - ($pow+1)/2, 3);
    push @ndigits, (0) x ($depth - $#ndigits);   # pad to $depth with 0s
  }
  ### @ndigits
  return \@ndigits;


  # {
  #   my ($pow, $depth) = round_down_pow (2*$n-1, 3);
  #
  #   ### h: 2*$n-1
  #   ### $depth
  #   ### $pow
  #   ### base: ($pow + 1)/2
  #   ### rem n: $n - ($pow + 1)/2
  #
  #   my @ndigits = digit_split_lowtohigh ($n - ($pow+1)/2,  3);
  #   $#ndigits = $depth-1;   # pad to $depth with undefs
  #   ### @ndigits
  #
  #   return \@ndigits;
  # }
}

#------------------------------------------------------------------------------
# xy_to_n()

# Nrow(depth+1) - Nrow(depth)
#   = (3*pow+1)/2 - (pow+1)/2
#   = (3*pow + 1 - pow - 1)/2
#   = (2*pow)/2
#   = pow
#
sub xy_to_n {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### PythagoreanTree xy_to_n(): "$x, $y"

  my ($p,$q) = &{$self->{'xy_to_pq'}}($x,$y)
    or return undef;    # not a primitive A,B,C

  unless ($p >= 2 && $q >= 1) {          # must be P > Q >= 1
    return undef;
  }
  if (is_infinite($p)) {
    return $p;  # infinity
  }
  if (is_infinite($q)) {
    return $q;  # infinity
  }
  if ($p%2 == $q%2) {  # must be opposite parity, not same parity
    return undef;
  }

  my @ndigits;  # low to high
  if ($self->{'tree_type'} eq 'FB') {
    for (;;) {
      unless ($p > $q && $q >= 1) {
        return undef;
      }
      last if $q <= 1 && $p <= 2;

      if ($q % 2) {
        ### q odd, p even, digit 1 or 2 ...
        $p /= 2;
        if ($q > $p) {
          ### digit 2, M3 ...
          push @ndigits, 2;
          $q -= $p;  # opp parity of p, and < new p
        } else {
          ### digit 1, M2 ...
          push @ndigits, 1;
          $q = $p - $q;  # opp parity of p, and < p
        }
      } else {
        ### q even, p odd, digit 0, M1 ...
        push @ndigits, 0;
        $q /= 2;
        $p -= $q;  # opp parity of q
      }
      ### descend: "$q / $p"
    }

  } elsif ($self->{'tree_type'} eq 'UMT') {
    for (;;) {
      ### at: "p=$p q=$q"
      my $qmod2 = $q % 2;
      unless ($p > $q && $q >= 1) {
        return undef;
      }
      last if $q <= 1 && $p <= 2;

      if ($p < 2*$q) {
        ($p,$q) = ($q, 2*$q-$p);  # U
        push @ndigits, 0;
      } elsif ($qmod2) {
        $p /= 2;   # M2
        $q = $p - $q;
        push @ndigits, 1;
      } else {
        $q /= 2;    # T
        $p -= 3*$q;
        push @ndigits, 2;
      }
    }

  } else {
    ### UAD or UArD ...
    ### assert: $self->{'tree_type'} eq 'UAD' || $self->{'tree_type'} eq 'UArD'
    for (;;) {
      ### $p
      ### $q
      if ($q <= 0 || $p <= 0 || $p <= $q) {
        return undef;
      }
      last if $q <= 1 && $p <= 2;

      if ($p > 2*$q) {
        if ($p > 3*$q) {
          ### digit 2 ...
          push @ndigits, 2;
          $p -= 2*$q;
        } else {
          ### digit 1
          push @ndigits, 1;
          ($p,$q) = ($q, $p - 2*$q);
        }

      } else {
        ### digit 0 ...
        push @ndigits, 0;
        ($p,$q) = ($q, 2*$q-$p);
      }
      ### descend: "$q / $p"
    }
  }
  ### @ndigits

  if ($self->{'digit_order'} eq 'LtoH') {
    @ndigits = reverse @ndigits;
    ### unreverse: @ndigits
  }
  if ($self->{'tree_type'} eq 'UArD') {
    Math::PlanePath::GrayCode::_digits_from_gray_reflected(\@ndigits,3);
    ### ungray: @ndigits
  }

  my $zero = $x*0*$y;
  ### offset: digit_join_lowtohigh(\@ndigits,3,$zero)
  ### depth: scalar(@ndigits)
  ### Nrow: $self->tree_depth_to_n($zero + scalar(@ndigits))

  return ($self->tree_depth_to_n($zero + scalar(@ndigits))
          + digit_join_lowtohigh(\@ndigits,3,$zero)); # offset into row
}

# numprims(H) = how many with hypot < H
# limit H->inf  numprims(H) / H -> 1/2pi
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### PythagoreanTree rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  my $zero = ($x1 * 0 * $y1 * $x2 * $y2);  # inherit bignum

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  ### x2: "$x2"
  ### y2: "$y2"

  if ($self->{'coordinates'} eq 'BA') {
    ($x2,$y2) = ($y2,$x2);
  }
  if ($self->{'coordinates'} eq 'SM') {
    if ($x2 > $y2) {   # both max
      $y2 = $x2;
    } else {
      $x2 = $y2;
    }
  }

  if ($self->{'coordinates'} eq 'PQ') {
    if ($x2 < 2 || $y2 < 1) {
      return (1,0);
    }
    # P > Q so reduce y2 to at most x2-1
    if ($y2 >= $x2) {
      $y2 = $x2-1;    # $y2 = min ($y2, $x2-1);
    }

    if ($y2 < $y1) {
      ### PQ y range all above X=Y diagonal ...
      return (1,0);
    }
  } else {
    # AB,AC,BC, SM,SC,MC
    if ($x2 < 3 || $y2 < 0) {
      return (1,0);
    }
  }

  my $depth;
  if ($self->{'tree_type'} eq 'FB') {
    ### FB ...
    if ($self->{'coordinates'} eq 'PQ') {
      $x2 *= 3;
    }
    my ($pow, $exp) = round_down_pow ($x2, 2);
    $depth = 2*$exp;
  } else {
    ### UAD or UArD, and UMT ...
    if ($self->{'coordinates'} eq 'PQ') {
      ### PQ ...
      # P=k+1,Q=k diagonal N=100..000 first of row is depth=P-2
      # anything else in that X=P column is smaller depth
      $depth = $x2 - 2;
    } else {
      my $xdepth = int (($x2+1) / 2);
      my $ydepth = int (($y2+31) / 4);
      $depth = min($xdepth,$ydepth);
    }
  }
  ### depth: "$depth"
  return (1, $self->tree_depth_to_n_end($zero+$depth));
}

#------------------------------------------------------------------------------
use constant tree_num_roots => 1;

sub tree_n_children {
  my ($self, $n) = @_;
  unless ($n >= 1) {
    return;
  }
  $n *= 3;
  return ($n-1, $n, $n+1);
}
sub tree_n_num_children {
  my ($self, $n) = @_;
  return ($n >= 1 ? 3 : undef);
}
sub tree_n_parent {
  my ($self, $n) = @_;
  unless ($n >= 2) {
    return undef;
  }
  return int(($n+1)/3);
}
sub tree_n_to_depth {
  my ($self, $n) = @_;
  ### PythagoreanTree tree_n_to_depth(): $n
  unless ($n >= 1) {
    return undef;
  }
  my ($pow, $depth) = round_down_pow (2*$n-1, 3);
  return $depth;
}

sub tree_depth_to_n {
  my ($self, $depth) = @_;
  return ($depth >= 0
          ? (3**$depth + 1)/2
          : undef);
}
# (3^(d+1)+1)/2-1 = (3^(d+1)-1)/2
sub tree_depth_to_n_end {
  my ($self, $depth) = @_;
  return ($depth >= 0
          ? (3**($depth+1) - 1)/2
          : undef);
}
sub tree_depth_to_n_range {
  my ($self, $depth) = @_;
  if ($depth >= 0) {
    my $n_lo = (3**$depth + 1) / 2;  # same as tree_depth_to_n()
    return ($n_lo, 3*$n_lo-2);
  } else {
    return;
  }
}
sub tree_depth_to_width {
  my ($self, $depth) = @_;
  return ($depth >= 0
          ? 3**$depth
          : undef);
}

#------------------------------------------------------------------------------

# Maybe, or abc_to_pq() perhaps with two of three values.
#
# @EXPORT_OK = ('ab_to_pq','pq_to_ab');
#
# =item C<($p,$q) = Math::PlanePath::PythagoreanTree::ab_to_pq($a,$b)>
#
# Return the P,Q coordinates for C<$a,$b>.  As described above this is
#
#     P = sqrt((C+A)/2)    where C=sqrt(A^2+B^2)
#     Q = sqrt((C-A)/2)
#
# The returned P,Q are integers PE<gt>=0,QE<gt>=0, but the further
# conditions for the path (namely PE<gt>QE<gt>=1 and no common factor) are
# not enforced.
#
# If P,Q are not integers or if BE<lt>0 then return an empty list.  This
# ensures A,B is a Pythagorean triple, ie. that C=sqrt(A^2+B^2) is an
# integer, but it might not be a primitive triple and might not have A odd B
# even.
#
# =item C<($a,$b) = Math::PlanePath::PythagoreanTree::pq_to_ab($p,$q)>
#
# Return the A,B coordinates for C<$p,$q>.  This is simply
#
#     $a = $p*$p - $q*$q
#     $b = 2*$p*$q
#
# This is intended for use with C<$p,$q> satisfying PE<gt>QE<gt>=1 and no
# common factor, but that's not enforced.


# a=p^2-q^2, b=2pq, c=p^2+q^2
# Done as a=(p-q)*(p+q) for one multiply instead of two squares, and to work
# close to a=UINT_MAX.
#
sub _pq_to_ab {
  my ($p, $q) = @_;
  return (($p-$q)*($p+$q), 2*$p*$q);
}

# C=(p-q)^2+B for one squaring instead of two.
# Also possible is C=(p+q)^2-B, but prefer "+B" so as not to round-off in
# floating point if (p+q)^2 overflows an integer.
sub _pq_to_bc {
  my ($p, $q) = @_;
  my $b = 2*$p*$q;
  $p -= $q;
  return ($b, $p*$p+$b);
}

# a=p^2-q^2, b=2pq, c=p^2+q^2
# Could a=(p-q)*(p+q) to avoid overflow if p^2 exceeds an integer as per
# _pq_to_ab(), but c overflows in that case anyway.
sub _pq_to_ac {
  my ($p, $q) = @_;
  $p *= $p;
  $q *= $q;
  return ($p-$q, $p+$q);
}

# a=p^2-q^2, b=2pq, c=p^2+q^2
# a<b
#  p^2-q^2 < 2pq
#  p^2 + 2pq - q^2 < 0
#  (p+q)^2 - 2*q^2 < 0
#  (p+q + sqrt(2)*q)*(p+q - sqrt(2)*q) < 0
#  (p+q - sqrt(2)*q) < 0
#  p + (1-sqrt(2))*q < 0
#  p < (sqrt(2)-1)*q
#
sub _pq_to_sc {
  my ($p, $q) = @_;
  my $b = 2*$p*$q;
  my $p_plus_q = $p + $q;
  $p -= $q;
  return (min($p_plus_q*$p, $b),  # A = P^2-Q^2 = (P+Q)*(P-Q)
          $p*$p+$b);              # C = P^2+Q^2 = (P-Q)^2 + 2*P*Q
}
sub _pq_to_mc {
  my ($p, $q) = @_;
  my $b = 2*$p*$q;
  my $p_plus_q = $p + $q;
  $p -= $q;
  return (max($p_plus_q*$p, $b),  # A = P^2-Q^2 = (P+Q)*(P-Q)
          $p*$p+$b);              # C = P^2+Q^2 = (P-Q)^2 + 2*P*Q
}
sub _pq_to_sm {
  my ($p, $q) = @_;
  my ($a, $b) = _pq_to_ab($p,$q);
  return ($a < $b ? ($a, $b) : ($b, $a));
}

# u = p+q, v=p-q
# at given p, vertical q
# u=p,v=p on diagonal then p+q,p-q is diagonal down
# so mirror p axis to x=y diagonal and measure down diagonal from there
sub _pq_to_uv {
  my ($p, $q) = @_;
  return ($p+$q, $p-$q);
}

# r = b+c = 2pq+p^2+q^2 = (p+q)^2
# s = c-a = p^2+q^2 - (p^2-q^2) = 2*q^2
sub _pq_to_rs {
  my ($p, $q) = @_;
  return (($p+$q)**2, 2*$q*$q);
}

# s = c-a = p^2+q^2 - (p^2-q^2) = 2*q^2
# t = a+b-c = p^2-q^2 + 2pq - (p^2+q^2) = 2pq-2q^2 = 2(p-q)q
sub _pq_to_st {
  my ($p, $q) = @_;
  my $q2 = 2*$q;
  return ($q2*$q, ($p-$q)*$q2);
}

#------------------------------------------------------------------------------

# a = p^2 - q^2
# b = 2pq
# c = p^2 + q^2
#
# q = b/2p
# a = p^2 - (b/2p)^2
#   = p^2 - b^2/4p^2
# 4ap^2 = 4p^4 - b^2
# 4(p^2)^2 - 4a*p^2 - b^2 = 0
# p^2 = [ 4a +/- sqrt(16a^2 + 16*b^2) ] / 2*4
#     = [ a +/- sqrt(a^2 + b^2) ] / 2
#     = (a +/- c) / 2   where c=sqrt(a^2+b^2)
# p = sqrt((a+c)/2)    since c>a
#
# a = (a+c)/2 - q^2
# q^2 = (a+c)/2 - a
#     = (c-a)/2
# q = sqrt((c-a)/2)
#
# if c^2 = a^2+b^2 is a perfect square then a,b,c is a pythagorean triple
# p^2 = (a+c)/2
#     = (a + sqrt(a^2+b^2))/2
# 2p^2 = a + sqrt(a^2+b^2)
#
# p>q so a>0
# a+c even is a odd, c odd or a even, c even
# if a odd then c=a^2+b^2 is opp of b parity, must have b even to make c+a even
# if a even then c=a^2+b^2 is same as b parity, must have b even to c+a even
#
# a=6,b=8 is c=sqrt(6^2+8^2)=10
# a=0,b=4 is c=sqrt(0+4^4)=4 p^2=(a+c)/2 = 2 not a square
# a+c even, then (a+c)/2 == 0,1 mod 4 so a+c==0,2 mod 4
#
sub _ab_to_pq {
  my ($a, $b) = @_;
  ### _ab_to_pq(): "A=$a, B=$b"

  unless ($b >= 4 && ($a%2) && !($b%2)) {   # A odd, B even
    return;
  }

  # This used to be $c=hypot($a,$b) and check $c==int($c), but libm hypot()
  # on Darwin 8.11.0 is somehow a couple of bits off being an integer, for
  # example hypot(57,176)==185 but a couple of bits out so $c!=int($c).
  # Would have thought hypot() ought to be exact on integer inputs and a
  # perfect square sum :-(.  Check for a perfect square by multiplying back
  # instead.
  #
  # The condition is "$csquared != $c*$c" with operands that way around
  # since the other way is bad for Math::BigInt::Lite 0.14.
  #
  my $c;
  {
    my $csquared = $a*$a + $b*$b;
    $c = _sqrtint($csquared);
    ### $csquared
    ### $c
    # since A odd and B even should have C odd, but floating point rounding
    # might prevent that
    unless ($csquared == $c*$c) {
      ### A^2+B^2 not a perfect square ...
      return;
    }
  }
  return _ac_to_pq($a,$c);
}

sub _bc_to_pqa {
  my ($b, $c) = @_;
  ### _bc_to_pqa(): "B=$b C=$c"

  unless ($c > $b && $b >= 4 && !($b%2) && ($c%2)) {  # B even, C odd
    return;
  }

  my $a;
  {
    my $asquared = $c*$c - $b*$b;
    unless ($asquared > 0) {
      return;
    }
    $a = _sqrtint($asquared);
    ### $asquared
    ### $a
    unless ($asquared == $a*$a) {
      return;
    }
  }

  # If $c is near DBL_MAX can have $a overflow to infinity, leaving A>C.
  # _ac_to_pq() will detect that.
  my ($p,$q) = _ac_to_pq($a,$c) or return;
  return ($p,$q,$a);
}

sub _ac_to_pq {
  my ($a, $c) = @_;
  ### _ac_to_pq(): "A=$a C=$c"

  unless ($c > $a && $a >= 3 && ($a%2) && ($c%2)) {  # A odd, C odd
    return;
  }
  $a = ($a-1)/2;
  $c = ($c-1)/2;
  ### halved to: "a=$a c=$c"

  my $p;
  {
    # If a,b,c is a triple but not primitive then can have psquared not an
    # integer.  Eg. a=9,b=12 has c=15 giving psquared=(9+15)/2=12 is not a
    # perfect square.  So notice that here.
    #
    my $psquared = $c+$a+1;
    $p = _sqrtint($psquared);
    ### $psquared
    ### $p
    unless ($psquared == $p*$p) {
      ### P^2=A+C not a perfect square ...
      return;
    }
  }

  my $q;
  {
    # If a,b,c is a triple but not primitive then can have qsquared not an
    # integer.  Eg. a=15,b=36 has c=39 giving qsquared=(39-15)/2=12 is not a
    # perfect square.  So notice that here.
    #
    my $qsquared = $c-$a;
    $q = _sqrtint($qsquared);
    ### $qsquared
    ### $q
    unless ($qsquared == $q*$q) {
      return;
    }
  }

  # Might have a common factor between P,Q here.  Eg.
  #     A=27 = 3*3*3, B=36 = 4*3*3
  #     A=45 = 3*3*5, B=108 = 4*3*3*3
  #     A=63, B=216
  #     A=75 =3*5*5  B=100 = 4*5*5
  #     A=81, B=360
  #
  return ($p, $q);
}

sub _sm_to_pq {
  my ($s, $m) = @_;
  unless ($s < $m) {
    return;
  }
  return _ab_to_pq($s % 2
                   ? ($s,$m)    # s odd is A
                   : ($m,$s));  # s even is B
}


# s^2+m^2=c^2
# if s odd then a=s
# ac_to_pq
# b = 2pq check isn't smaller than s
#
# p^2=(c+a)/2
# q^2=(c-a)/2

sub _sc_to_pq {
  my ($s, $c) = @_;
  my ($p,$q);
  if ($s % 2) {
    ($p,$q) = _ac_to_pq($s,$c)     # s odd is A
      or return;
    if ($s > 2*$p*$q) { return; }  # if s>B then s is not the smaller one
  } else {
    ($p,$q,$a) = _bc_to_pqa($s,$c)   # s even is B
      or return;
    if ($s > $a) { return; }         # if s>A then s is not the smaller one
  }
  return ($p,$q);
}

sub _mc_to_pq {
  my ($m, $c) = @_;
  ### _mc_to_pq() ...
  my ($p,$q);
  if ($m % 2) {
    ### m odd is A ...
    ($p,$q) = _ac_to_pq($m,$c)
      or return;
    if ($m < 2*$p*$q) { return; }   # if m<B then m is not the bigger one
  } else {
    ### m even is B ...
    ($p,$q,$a) = _bc_to_pqa($m,$c)
      or return;
    ### $a
    if ($m < $a) { return; }         # if m<A then m is not the bigger one
  }
  return ($p,$q);
}

# u = p+q, v=p-q
# u+v=2p   p = (u+v)/2
# u-v=2q   q = (u-v)/2
sub _uv_to_pq {
  my ($u, $v) = @_;
  return (($u+$v)/2, ($u-$v)/2);
}

# r = (p+q)^2
# s = 2*q^2 so   q = sqrt(r/2)
sub _rs_to_pq {
  my ($r, $s) = @_;

  return if $s % 2;
  $s /= 2;
  return unless $s >= 1;
  my $q = _sqrtint($s);
  return unless $q*$q == $s;

  return unless $r >= 1;
  my $p_plus_q = _sqrtint($r);
  return unless $p_plus_q*$p_plus_q == $r;

  return ($p_plus_q - $q, $q);
}

# s = 2*q^2
# t = a+b-c = p^2-q^2 + 2pq - (p^2+q^2) = 2pq-2q^2 = 2(p-q)q
#
# p=2,q=1  s=2  t=2.1.1=2
#
sub _st_to_pq {
  my ($s, $t) = @_;

  ### _st_to_pq(): "$s, $t"
  return if $s % 2;
  $s /= 2;
  return unless $s >= 1;
  my $q = _sqrtint($s);
  ### $q
  return unless $q*$q == $s;

  return if $t % 2;
  $t /= 2;
  ### rem: $t % $q
  return if $t % $q;
  $t /= $q;  # p-q

  ### pq: ($t+$q).", $q"

  return ($t+$q, $q);
}

1;
__END__



# my $a = 1;
# my $b = 1;
# my $c = 2;
# my $d = 3;

# ### at: "$a,$b,$c,$d   digit $digit"
# if ($digit == 0) {
#   ($a,$b,$c) = ($a,2*$b,$d);
# } elsif ($digit == 1) {
#   ($a,$b,$c) = ($d,$a,2*$c);
# } else {
#   ($a,$b,$c) = ($a,$d,2*$c);
# }
# $d = $b+$c;
#   ### final: "$a,$b,$c,$d"
# #  print "$a,$b,$c,$d\n";
#   my $x = $c*$c-$b*$b;
#   my $y = 2*$b*$c;
#   return (max($x,$y), min($x,$y));

# return $x,$y;




=for stopwords eg Ryde UAD FB Berggren Barning ie PQ parameterized parameterization Math-PlanePath someP someQ Q's coprime mixed-radix Nrow N-Nrow Liber Quadratorum gnomon gnomons Diophantus Nrem OEIS UArD mirrorings Firstov Semigroup Matematicheskie Zametki semigroup UMT LtoH

=head1 NAME

Math::PlanePath::PythagoreanTree -- primitive Pythagorean triples by tree

=head1 SYNOPSIS

 use Math::PlanePath::PythagoreanTree;
 my $path = Math::PlanePath::PythagoreanTree->new
              (tree_type => 'UAD',
               coordinates => 'AB');
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path enumerates primitive Pythagorean triples by a breadth-first
traversal of one of three ternary trees,

    "UAD"    Berggren, Barning, Hall, et al
    "FB"     Price
    "UMT"    a third form

Each X,Y point is a pair of integer A,B sides of a right triangle.  The
points are "primitive" in the sense that the sense that A and B have no
common factor.

     A^2 + B^2 = C^2    gcd(A,B)=1, no common factor
     X=A, Y=B

        ^   *  ^
       /   /|  |      right triangle
      C   / |  B      A side odd
     /   /  |  |      B side even
    v   *---*  v      C hypotenuse  all integers

        <-A->

A primitive triple always has one of A,B odd and the other even.  The trees
here have triples ordered as A odd and B even.

The trees are traversed breadth-first and tend to go out to rather large A,B
values while yet to complete smaller ones.  The UAD tree goes out further
than the FB.  See the author's mathematical write-up for more properties.

=over

L<http://user42.tuxfamily.org/triples/index.html>

=back

=head2 UAD Tree

The UAD tree by Berggren (1934) and later independently by Barning (1963),
Hall (1970), and other authors, uses three matrices U, A and D which can be
multiplied onto an existing primitive triple to form three further new
primitive triples.

    tree_type => "UAD"   (the default)

    Y=40 |          14
         |
         |
         |
         |                                              7
    Y=24 |        5
         |
    Y=20 |                      3
         |
    Y=12 |      2                             13
         |
         |                4
     Y=4 |    1
         |
         +--------------------------------------------------
            X=3         X=15  X=20           X=35      X=45

The UAD matrices are

         1 -2  2         1  2  2         -1  2  2
    U =  2 -1  2     A = 2  1  2     D = -2  1  2
         2 -2  3         2  2  3         -2  2  3

They're multiplied on the right of an (A,B,C) column vector, for example

         / 3 \     /  5 \
     U * | 4 |  =  | 12 |
         \ 5 /     \ 13 /

The starting point is N=1 at X=3,Y=4 which is the well-known triple

    3^2 + 4^2 = 5^2

From it three further points N=2, N=3 and N=4 are derived, then three more
from each of those, etc,

=cut

# printed by tools/pythagorean-tree.pl

=pod

    depth=0   depth=1    depth=2    depth=3
     N=1      N=2..4     N=5..13    N=14...

                      +-> 7,24             A,B coordinates
          +-> 5,12  --+-> 55,48
          |           +-> 45,28
          |
          |           +-> 39,80
    3,4 --+-> 21,20 --+-> 119,120
          |           +-> 77,36
          |
          |           +-> 33,56
          +-> 15,8  --+-> 65,72
                      +-> 35,12

Counting N=1 as depth=0, each level has 3^depth many points and the first N
of a level (C<tree_depth_to_n()>) is at

    Nrow = 1 + (1 + 3 + 3^2 + ... + 3^(depth-1))
         = (3^depth + 1) / 2

The level numbering is like a mixed-radix representation of N where the high
digit is binary (so always 1) and the digits below are ternary.

         +--------+---------+---------+--   --+---------+
    N =  | binary | ternary | ternary |  ...  | ternary |
         +--------+---------+---------+--   --+---------+
              1      0,1,2     0,1,2             0,1,2

The number of ternary digits is the "depth" and their value without the high
binary 1 is the position in the row.

=head2 A Repeatedly

Taking the middle "A" matrix repeatedly gives

    3,4 -> 21,20 -> 119,120 -> 697,696 -> etc

which are the triples with legs A,B differing by 1 and therefore just above
or below the X=Y leading diagonal.  The N values are 1,3,9,27,etc = 3^depth.

=cut

# FIXME: were these known to Fermat?
# PQ coordinates A000129 Pell numbers

=pod

=head2 D Repeatedly

Taking the lower "D" matrix repeatedly gives

   3,4 -> 15,8 -> 35,12 -> 63,16 -> etc

which is the primitives among a sequence of triples known to the ancients
(Dickson's I<History of the Theory of Numbers>, start of chapter IV),

     A = k^2-1       k even for primitives
     B = 2*k
     C = k^2+1       so C=A+2

When k is even these are primitive.  If k is odd then A and B are both even,
ie. a common factor of 2, so not primitive.  These points are the last of
each level, so at N=(3^(depth+1)-1)/2 which is C<tree_depth_to_n_end()>.

=head2 U Repeatedly

Taking the upper "U" matrix repeatedly gives

    3.4 -> 5,12 -> 7,24 -> 9,40 -> etc

with C=B+1 and A the odd numbers.  These are the first of each level so at
Nrow described above.  The resulting triples are a sequence known to
Pythagoras (Dickson's I<History of the Theory of Numbers>, start of chapter
IV).

    A = any odd integer, so A^2 any odd square
    B = (A^2-1)/2
    C = (A^2+1)/2

           / A^2-1 \       / A^2+1 \
    A^2 + | ------  |^2 = |  -----  |^2
           \   2   /       \   2   /

This is also described by X<Fibonacci>Fibonacci in his
X<Liber Quadratorum>I<Liber Quadratorum> (X<Book of Squares>I<Book of
Squares>) in terms of sums of odd numbers

    s = any odd square = A^2
    B^2 = 1 + 3 + 5 + ... + s-2      = ((s-1)/2)^2
    C^2 = 1 + 3 + 5 + ... + s-2 + s  = ((s+1)/2)^2
    so C^2 = A^2 + B^2

    eg. s=25=A^2  B^2=((25-1)/2)^2=144  so A=5,B=12

X<Gnomon>The geometric interpretation is that an existing square of side B
is extended by a X<Gnomon>"gnomon" around two sides making a new larger
square of side C=B+1.  The length of the gnomon is odd and when it's an odd
square then the new total area is the sum of two squares.

       *****gnomon*******     gnomon length an odd square = A^2
       +--------------+ *
       |              | *     so new bigger square area
       |    square    | *     C^2 = A^2 + B^2
       |  with side B | *
       |              | *
       +--------------+ *

See L<Math::PlanePath::Corner> for a path following such gnomons.

=head2 UArD Tree

X<Gray code>Option C<tree_type =E<gt> "UArD"> varies the UAD tree by
applying a left-right reflection under each "A" matrix.  The result is
ternary reflected Gray code order.  The 3 children under each node are
unchanged, just their order.

                      +-> 7,24         tree_type => "UArD"
          +-> 5,12  --+-> 55,48        A,B coordinates
          |           +-> 45,28
          |
          |           +-> 77,36        <-+- U,D legs swapped
    3,4 --+-> 21,20 --+-> 119,120        |
          |           +-> 39,80        <-+
          |
          |           +-> 33,56
          +-> 15,8  --+-> 65,72
                      +-> 35,12

Notice the middle points 77,36 and 39,80 are swapped relative to the UAD
shown above.  In general the whole tree underneath an "A" is mirrored.  If
there's an even number of "A"s above then those mirrorings cancel out to be
plain again.

This tree form is primarily of interest for L</Digit Order Low to High>
described below since it gives points in order clockwise down from the Y
axis.

In L</PQ Coordinates> below, with the default digits high to low, UArD also
makes successive steps across the row either horizontal or 45-degrees NE-SW.

In all cases the Gray coding is applied to N first, then the resulting
digits are interpreted either high to low (the default) or low to high
(C<LtoH> option).

=head2 FB Tree

X<Firstov, V. E.>X<Price, H. Lee>Option C<tree_type =E<gt> "FB"> selects a
tree independently by

=over

V. E. Firstov, "A Special Matrix Transformation
Semigroup of Primitive Pairs and the Genealogy of Pythagorean Triples",
Matematicheskie Zametki, 2008, volume 84, number 2, pages 281-299 (in
Russian), and Mathematical Notes, 2008, volume 84, number 2, pages 263-279
(in English)

H. Lee Price, "The Pythagorean Tree: A New Species", 2008,
L<http://arxiv.org/abs/0809.4324> (version 2)

=back

Firstov finds this tree by semigroup transformations.  Price finds it by
expressing triples in certain "Fibonacci boxes" with a box of four values
q',q,p,p' having p=q+q' and p'=p+q so each is the sum of the preceding two
in a fashion similar to the Fibonacci sequence.  A box where p and q have no
common factor corresponds to a primitive triple.  See L</PQ Coordinates> and
L</FB Transformations> below.

    tree_type => "FB"

    Y=40 |         5
         |
         |
         |
         |                                             17
    Y=24 |       4
         |
         |                     8
         |
    Y=12 |     2                             6
         |
         |               3
    Y=4  |   1
         |
         +----------------------------------------------
           X=3         X=15   x=21         X=35

For a given box three transformations can be applied to go to new boxes
corresponding to new primitive triples.  This visits all and only primitive
triples, but in a different order to the UAD above.

The first point N=1 is again at X=3,Y=4, from which three further points
N=2,3,4 are derived, then three more from each of those, etc.

=cut

# printed by tools/pythagorean-tree.pl

=pod

    N=1      N=2..4      N=5..13     N=14...

                      +-> 9,40             A,B coordinates
          +-> 5,12  --+-> 35,12
          |           +-> 11,60
          |
          |           +-> 21,20
    3,4 --+-> 15,8  --+-> 55,48
          |           +-> 39,80
          |
          |           +-> 13,84
          +-> 7,24  --+-> 63,16
                      +-> 15,112

=head2 UMT Tree

X<Firstov, V. E.>Option C<tree_type => "UMT"> is a third tree type by
Firstov (reference above).  It's a combination of "U", "M2" and a third
matrix T = M1*D.

=cut

# printed by tools/pythagorean-tree.pl

=pod

              U       +-> 7,24             A,B coordinates
          +-> 5,12  --+-> 35,12
          |           +-> 65,72
          |
          |   M2      +-> 33,56
    3,4 --+-> 15,8  --+-> 55,48
          |           +-> 45,28
          |
          |   T       +-> 39,80
          +-> 21,20 --+-> 91,60
                      +-> 105,88

The first "T" child 21,20 is the same as the "A" matrix, but it differs at
further levels down.  For example "T" twice is 105,88 which is not the same
as "A" twice 119,120.

=head2 Digit Order Low to High

Option C<digit_order =E<gt> 'LtoH'> applies matrices using the ternary
digits of N taken from low to high.  The points in each row are unchanged,
as is the parent-child N numbering, but the X,Y values are rearranged within
the row.

The UAD matrices send points to disjoint regions and the effect of LtoH is
to keep the tree growing into those separate wedge regions.  The arms grow
roughly as follows

=cut

# math-image --path=PythagoreanTree,digit_order=LtoH --all --output=numbers_xy --size=75x14

=pod

    tree_type => "UAD", digit_order => "LtoH"

    Y=80 |                  6                       UAD LtoH
         |                 /
         |                /
    Y=56 |               /   7     10  9
         |              /   /       / /
         |             /   /       | /  8
         |            /  _/       / /  /
         |           /  /        / /  /
    Y=24 |        5 /  /        | / _/        __--11
         |       / / _/         |/_/      __--
    Y=20 |      / / /         __3     __--       _____----12
         |      |/_/      __--   __---  ____-----
    Y=12 |      2     __--     _/___----  ____13
         |     /  __--     __-- _____-----
         |    /_--_____---4-----
     Y=4 |    1---
         |
         +--------------------------------------------------
            X=3         X=15  X=20           X=35        X=76

Notice the points of the second row N=5 to N=13 are almost clockwise down
from the Y axis, except N=8,9,10 go upwards.  Those N=8,9,10 go upwards
because the A matrix has a reflection (its determinant is -1).

Option C<tree_type =E<gt> "UArD"> reverses the tree underneath each A, and
that plus LtoH gives A,B points going clockwise in each row.  P,Q
coordinates go clockwise too.

=head2 AC Coordinates

Option C<coordinates =E<gt> 'AC'> gives the A and C legs of each triple as
X=A,Y=C.

    coordinates => "AC"

     85 |        122                             10
        |
        |
     73 |                             6
        |
     65 |                  11             40
     61 |       41
        |
        |                        7
        |
        |
     41 |      14
        |                   13
     35 |
        |            3
     25 |     5
        |
     17 |         4
     13 |    2
        |
    Y=5 |   1
        |
        +-------------------------------------------
          X=3 7 9   21      35   45  55   63     77

Since AE<lt>C the coordinates are XE<lt>Y all above the X=Y diagonal.  The
L</D Repeatedly> triples described above have C=A+2 so they are the points
Y=X+2 just above the diagonal.

For the FB tree the set of points visited is the same, but with a different
N numbering.

    tree_type => "FB", coordinates => "AC"

     85 |        11                              35
        |
        |
     73 |                             9
        |
     65 |                  23             12
     61 |       7
        |
        |                        17
        |
        |
     41 |      5
        |                   6
     35 |
        |            8
     25 |     4
        |
     17 |         3
     13 |    2
        |
    Y=5 |   1
        |
        +-------------------------------------------
          X=3 7 9   21      35   45  55   63     77

=head2 BC Coordinates

Option C<coordinates =E<gt> 'BC'> gives the B and C legs of each triple as
X=B,Y=C.  This is the B=even and C=long legs of all primitive triples.  This
combination has points on 45-degree straight lines.

    coordinates => "BC"

    101 |           121
     97 |                                     12
        |
     89 |                                         8
     85 |                   10                      122
        |
        |
     73 |                         6
        |
     65 |         40                  11
     61 |                               41
        |
        |               7
        |
        |
     41 |                     14
        |       13
     35 |
        |           3
     25 |             5
        |
     17 |     4
     13 |       2
        |
    Y=5 |   1
        |
        +--------------------------------------------------
          X=4  12    24      40        60           84

Since BE<lt>C the coordinates are XE<lt>Y above the X=Y leading diagonal.
N=1,2,5,14,41,etc along the X=Y-1 diagonal are the L</U Repeatedly> triples
described above which have C=B+1 and are at the start of each tree row.

For the FB tree the set of points visited is the same, but with a different
N numbering.

    tree_type => "FB", coordinates => "BC"

    101 |           15
     97 |                                     50
        |
     89 |                                         10
     85 |                   35                      11
        |
        |
     73 |                         9
        |
     65 |         12                  23
     61 |                               7
        |
        |               17
        |
        |
     41 |                     5
        |       6
     35 |
        |           8
     25 |             4
        |
     17 |     3
     13 |       2
        |
    Y=5 |   1
        |
        +----------------------------------------------
          X=4  12    24      40        60           84

As seen from the diagrams, the B,C points fall on 45-degree straight lines
going up from X=Y-1.  This occurs because a primitive triple A,B,C with A
odd and B even can be written

    A^2 = C^2 - B^2
        = (C+B)*(C-B)

gcd(A,B)=1 means also gcd(C+B,C-B)=1 and so since C+B and C-B have no common
factor they must each be squares to give A^2.  Call them s^2 and t^2,

    C+B = s^2    and conversely  C = (s^2 + t^2)/2
    C-B = t^2                    B = (s^2 - t^2)/2

      s = odd integer      s >= 3
      t = odd integer  s > t >= 1
      with gcd(s,t)=1 so that gcd(C+B,C-B)=1

When t=1 this is C=(s^2+1)/2 and B=(s^2-1)/2 which is the "U"-repeated
points at Y=X+1 for each s.  As t increases the B,C coordinate combination
makes a line upwards at 45-degrees from those t=1 positions,

     C + B = s^2      anti-diagonal 45-degrees,
                      position along diagonal determined by t

All primitive triples start from a C=B+1 with C=(s^2+1)/2 half an odd
square, and go up from there.  To ensure the triple is primitive must have
gcd(s,t)=1.  Values of t where gcd(s,t)!=1 are gaps in the anti-diagonal
lines.

=head2 PQ Coordinates

Primitive Pythagorean triples can be parameterized as follows for A odd and
B even.  This is per Diophantus, and anonymous Arabic manuscript for
constraining it to primitive triples (Dickson's I<History of the Theory of
Numbers>).

    A = P^2 - Q^2
    B = 2*P*Q
    C = P^2 + Q^2
    with P > Q >= 1, one odd, one even, and no common factor

    P = sqrt((C+A)/2)
    Q = sqrt((C-A)/2)

The first P=2,Q=1 is the triple A=3,B=4,C=5.

Option C<coordinates =E<gt> 'PQ'> gives these as X=P,Y=Q, for either
C<tree_type>.  Because PE<gt>QE<gt>=1 the values fall in the eighth of the
plane below the X=Y diagonal,

=cut

# math-image --path=PythagoreanTree,coordinates=PQ --all --output=numbers_xy --size=75x14

=pod

    tree_type => "UAD", coordinates => "PQ"

     10 |                                                   9842
      9 |                                              3281
      8 |                                         1094        23
      7 |                                     365        32
      6 |                                122                  38
      5 |                            41         8
      4 |                       14        11        12        15
      3 |                   5                   6        16
      2 |              2         3         7        10        22
      1 |         1         4        13        40       121
    Y=0 |
        +--------------------------------------------------------
        X=0  1    2    3    4    5    6    7    8    9   10   11

The diagonal N=1,2,5,14,41,etc is P=Q+1 as per L</U Repeatedly> above.

The one-to-one correspondence between P,Q and A,B means both tree types
visit all P,Q pairs, so all X,Y with no common factor and one odd one even.
There's other ways to iterate through such coprime pairs and any such method
would generate Pythagorean triples too, in a different order from the trees
here.

The letters P and Q here are a little bit arbitrary.  This parameterization
is often written m,n or u,v but don't want "n" to be confused that with N
point numbering or "u" to be confused with the U matrix.

=head2 SM Coordinates

Option C<coordinates =E<gt> 'SM'> gives the small and medium legs from each
triple as X=small,Y=medium.  This is like "AB" except that if AE<gt>B then
they're swapped to X=B,Y=A so XE<lt>Y always.  The effect is to mirror the
AB points below the X=Y diagonal up to the upper eighth,

    coordinates => "SM"

     91 |                                16
     84 |        122
        |                     8
        |                    10
     72 |                                  12
        |
        |
     60 |       41 40
        |                  11
     55 |                          6
        |
        |                7
     40 |      14
        |
     35 |        13
        |
     24 |     5
     21 |            3
        |
     12 |    2 4
        |
    Y=4 |   1
        |
        +----------------------------------------
          X=3  8     20     33     48      60 65

=head2 SC Coordinates

Option C<coordinates =E<gt> 'SC'> gives the small leg and hypotenuse from
each triple,

    coordinates => "SC"

     85 |        122         10
        |
        |
     73 |                          6
        |
        |          40      11
     61 |       41
        |
     53 |                7
        |
        |
     41 |      14
     37 |        13
        |
        |            3
     25 |     5
        |
        |      4
     13 |    2
        |
    Y=5 |   1
        |
        +-----------------------------
          X=3  8     20     33     48

The points are all X E<lt> 0.7*Y since with X as the smaller leg must have
S<X^2 E<lt> Y^2/2> so S<X E<lt> Y*1/sqrt(2)>.

=head2 MC Coordinates

Option C<coordinates =E<gt> 'MC'> gives the medium leg and hypotenuse from
each triple,

    coordinates => "MC"

     65 |                             11 40
     61 |                               41
        |
     53 |                       7
        |
        |
     41 |                     14
     37 |                  13
        |
     29 |           3
     25 |             5
        |
     17 |        4
     13 |       2
        |
    Y=5 |   1
        |
        +-----------------------------------
          X=4   15   24    35 40      56 63

The points are in a wedge 0.7*Y E<lt> X E<lt> Y.  X is the bigger leg and
S<X^2 E<gt> Y^2/2> so S<X E<gt> Y*1/sqrt(2)>.

=cut

# if A=B=C/sqrt(2)
# A^2+B^2 = C^2/2+C^2/2 = C^2
# so X=Y/sqrt(2) = Y*0.7071

=pod

=head2 UAD Coordinates AB, AC, PQ -- Turn Right

In the UAD tree with coordinates AB, AC or PQ the path always turns to the
right.  For example in AB coordinates at N=2 the path turns to the right to
go towards N=3.

    coordinates => "AB"

    20 |                      3           N    X,Y
       |                                 --   ------
    12 |      2                           1    3,4
       |                                  2    5,12
       |                                  3   21,20
     4 |    1
       |                               turn towards the
       +-------------------------        right at N=2
            3 5              21

This can be proved from the transformations applied to seven cases, a
triplet U,A,D, then four crossing a gap within a level, then two wrapping
around at the end of a level.  The initial N=1,2,3 can be treated as a
wrap-around from the end of depth=0 (the last case D to U,A).

    U              triplet U,A,D
    A
    D

    U.D^k.A        crossing A,D to U
    U.D^k.D        across U->A gap
    A.U^k.U         k>=0

    A.D^k.A        crossing A,D to U
    A.D^k.D        across A->D gap
    D.U^k.U         k>=0

    U.D^k.D        crossing D to U,A
    U.U^k.U        across U->A gap
    A.U^k.A         k>=0

    A.D^k.D        crossing D to U,A
    A.U^k.U        across A->D gap
    D.U^k.A         k>=0

    D^k    .A      wraparound A,D to U
    D^k    .D       k>=0
    U^(k+1).U

    D^k            wraparound D to U,A
    U^k.U           k>=0
    U^k.A           (k=0 is initial N=1,N=2,N=3 for none,U,A)

The powers U^k and D^k are an arbitrary number of descents U or D.  In P,Q
coordinates these powers are

    U^k    P,Q   ->  (k+1)*P-k*Q, k*P-(k-1)*Q
    D^k    P,Q   ->  P+2k*Q, Q

For AC coordinates squaring to stretch to P^2,Q^2 doesn't change the turns.
Then a rotate by -45 degrees to A=P^2-Q^2, C=P^2+Q^2 also doesn't change the
turns.

=head2 UAD Coordinates BC -- Turn Left

In the UAD tree with coordinates BC the path always turns to the left.  For
example in BC coordinates at N=2 the path turns to the right to go towards
N=3.

    coordinates => "BC"

    29 |           3                N    X,Y
       |                           --   ------
       |                            1    4,5
       |                            2   12,13
    13 |       2                    3   20,29
       |
     5 |   1                     turn towards the
       |                           left at N=2
       +---------------
           4  12   20

As per above A,C turns to the right, which squared is A^2,C^2 to the right
too, which equals C^2-B^2,C^2.  Negating the X coordinate to B^2-C^2,C^2
mirrors to be a left turn always, and addition shearing to X+Y,Y doesn't
change that, giving B^2,C^2 always left and so B,C always left.

=cut

# U     P -> 2P-Q
#       Q -> P
#
# A     P -> 2P+Q
#       Q -> P
#
# D     P -> P+2Q
#       Q -> Q unchanged
#
# ------------------------------------
# none  (P,Q)
# U     (2P-Q,P)     dx1=P-Q  dy1=P-Q
# A     (2P+Q,P)     dx2=P+Q  dy2=P-Q
# dx2*dy1 - dx1*dy2
#    = (P+Q)*(P-Q) - (P-Q)*(P-Q)
#    = (P-Q) * (P+Q - (P-Q))
#    = (P-Q) * 2Q  > 0 so Right
#
# ------------------------------------
# U    (2P-Q,P)
# A    (2P+Q,P)     dx1=2Q    dy1=0
# D    (P+2Q,Q)     dx2=-P+3Q dy2=Q-P
# dx2*dy1 - dx1*dy2
#    = (-P+3Q)*0 - 2Q * (Q-P)
#    = 2Q*(P-Q) > 0  so Right
#
# ------------------------------------
# crossing A,D to U   from gap U,A
# U.D^k.A = (2*P-Q,P) . D^k . A
#         = (2*P-Q + 2*k*P, P) . A
#         = ((2*k+2)*P-Q, P) . A
#         = 2*((2*k+2)*P-Q) + P,   (2*k+2)*P-Q
#         = (4*k+4)*P - 2*Q + P,  (2*k+2)*P-Q
#         = (4*k+5)*P - 2*Q,      (2*k+2)*P-Q
# U.D^k.D = ((2*k+2)*P-Q, P) . D
#         = (2*k+2)*P-Q + 2*P,  P
#         = (2*k+4)*P-Q,        P
# A.U^k.U = (2*P+Q, P) . U^(k+1)
#         = (k+2)*(2*P+Q) - (k+1)*P,      (k+1)*(2*P+Q) - k*P
#         = (k+3)*P + (k+2)*Q,            (k+2)*P + (k+1)*Q
#  dx1 = (2*k+4)*P-Q       - ((4*k+5)*P - 2*Q)
#  dy1 = P                 - ((2*k+2)*P-Q)
#  dx2 = (k+3)*P + (k+2)*Q - ((4*k+5)*P - 2*Q)
#  dy2 = (k+2)*P + (k+1)*Q - ((2*k+2)*P-Q)
# dx2*dy1 - dx1*dy2
#    =  4*P^2*k^2 + (6*P^2 - 6*Q*P)*k + (2*P^2 - 4*Q*P + 2*Q^2)
#    =  4*P^2*k^2 + 6*P*(P-Q)*k       + 2*(P-Q)^2
#       > 0  turn right
#
# ------------------------------------
# wraparound A,D to U
# D^k    .A  = (P+2kQ, Q) . A
#            = 2*(P+2*k*Q)+Q, P+2*k*Q
#            = 2*P+(4*k+1)*Q, P+2*k*Q
# D^k    .D  = D^(k+1) = P+(2*k+2)*Q, Q
# U^(k+1).U  = U^(k+1) = (k+3)*P-(k+2)*Q, (k+2)*P-(k+1)*Q
#  dx1 = P+(2*k+2)*Q - (2*P+(4*k+1)*Q)
#       = -P + (-2*k+1)*Q
#  dy1 = Q - (P+2*k*Q)
#      = -P + (-2k+1)Q
#  dx2 = (k+3)*P-(k+2)*Q - (2*P+(4*k+1)*Q)
#      = (k+1)*P + (-5*k-3)*Q
#  dy2 = (k+2)*P-(k+1)*Q - (P+2*k*Q)
#      = (k+1)P + (-k-1 -2k)Q
#      = (k+1)*P + (-3k-1)*Q
# dx2*dy1 - dx1*dy2
#    = ((k+1)P + (-5k-3)Q) * (-P + (-2k+1)Q) - (-P + (-2k+1)) * ((k+1)P + (-3k-1)Q)
#    = (2*Q*k + 2*Q)*P + (4*Q^2*k^2 + 2*Q^2*k - 2*Q^2)
#    = (2*k + 2)*P*Q + (4*k^2 + 2*k - 2)*Q^2
#     > 0  turn Right
#
# eg. P=2,Q=1 k=0
# D^k  .A   = 5,2
# D^k  .D   = 4,1
# U^k+1.U   = 4,3
# dx1 = -1
# dy1 = -1
# dx2 = -1
# dy2 = 1
# dx2*dy1 - dx1*dy2 = 2
#
# ------------------------------------
# wraparound D to U,A
# D^k     = P+2*k*Q, Q
# U^k.U   = U^(k+1)
#         = (k+2)*P-(k+1)*Q, (k+1)*P-k*Q
# U^k.A   = (k+1)*P-k*Q, k*P-(k-1)*Q  . A
#         = 2*((k+1)*P-k*Q) + k*P-(k-1)*Q, (k+1)*P-k*Q
#         = (3*k+2)*P + (-3*k+1)*Q,        (k+1)*P-k*Q
#  dx1 = (k+2)*P-(k+1)*Q - (P+2*k*Q)
#      = (k+1)*P + (-3*k-1)*Q
#  dy1 = (k+1)*P-k*Q - Q
#      = (k+1)*P-(k+1)*Q
#  dx2 = (3*k+2)*P + (-3*k+1)*Q - (P+2*k*Q)
#      = (3*k+1)*P + (-5*k+1)*Q
#  dy2 = (k+1)*P-k*Q - Q
#      = (k+1)*P-(k+1)*Q
# dx2*dy1 - dx1*dy2
#   = (2*P^2 - 4*Q*P + 2*Q^2)*k^2 + (2*P^2 - 2*Q*P)*k + (2*Q*P - 2*Q^2)
#   = 2*(P-Q)^2*k^2               + 2*P*(P-Q)*k       + 2*Q*(P-Q)
#     > 0  turn Right
#
# eg. P=2;Q=1;k=1
#  4,1
#  4,3
#  8,3


# 2P-Q,P to 2P+Q,P to P+2Q,Q  P>Q>=1
#
#           right at first "U"
#                 3P-2Q,2P-Q ----- 5P-2Q,2P-Q
#                   |
#                   |
#           2P-Q,P ---- 2P+Q,P right at "A"
#                   |    /
#                   |   /
#    P,Q           P+2Q,Q
#
#                                           3P+2Q,2P+Q
#
#
#              "U" 3P-2Q,2P-Q ----- 5P-2Q,2P-Q "A"
#                                    /
#                                   /
#                                4P-Q,P "D"
#
#
#    P,Q
#
#                     / U 4P-2Q-P,2P-Q = 3P-2Q,2P-Q
#           U 2P-Q,P -- A 4P-2Q+P,2P-Q = 5P-2Q,2P-Q
#         /           \ D 2P-Q+2P,P    = 4P-Q, P
#        /            / U 4P+2Q-P,2P+Q = 3P+2Q,2P+Q
#    P,Q -- A 2P+Q,P -- A
#        \            \ D
#         \           / U
#           D P+2Q,Q -- A
#                     \ D


=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::PythagoreanTree-E<gt>new ()>

=item C<$path = Math::PlanePath::PythagoreanTree-E<gt>new (tree_type =E<gt> $str, coordinates =E<gt> $str)>

Create and return a new path object.  The C<tree_type> option can be

    "UAD"         (the default)
    "UArD"        UAD with Gray code reflections
    "FB"
    "UMT"

The C<coordinates> option can be

    "AB"     odd, even legs     (the default)
    "AC"     odd leg, hypotenuse
    "BC"     even leg, hypotenuse
    "PQ"
    "SM"     small, medium legs
    "SC"     small leg, hypotenuse
    "MC"     medium leg, hypotenuse

The C<digit_order> option can be

    "HtoL"   high to low (the default)
    "LtoH"   low to high (the default)

=item C<$n = $path-E<gt>n_start()>

Return 1, the first N in the path.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 1 and if C<$nE<lt>1> then the return is an empty list.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  If there's nothing at
C<$x,$y> then return C<undef>.

The return is C<undef> if C<$x,$y> is not a primitive Pythagorean triple,
per the C<coordinates> option.

=item C<$rsquared = $path-E<gt>n_to_radius ($n)>

Return the radial distance R=sqrt(X^2+Y^2) of point C<$n>.  If there's no
point C<$n> then return C<undef>.

For coordinates=AB or SM this is the hypotenuse C and therefore an integer,
for integer C<$n>.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

Return a range of N values which occur in a rectangle with corners at
C<$x1>,C<$y1> and C<$x2>,C<$y2>.  The range is inclusive.

Both trees go off into large X,Y coordinates while yet to finish values
close to the origin which means the N range for a rectangle can be quite
large.  For UAD C<$n_hi> is roughly C<3**max(x/2)>, or for FB smaller at
roughly C<3**log2(x)>.

=back

=head2 Descriptive Methods

=over

=item C<$x = $path-E<gt>x_minimum()>

=item C<$y = $path-E<gt>y_minimum()>

Return the minimum X or Y occurring in the path.  The value goes according
to the C<coordinates> option,

    coordinate    minimum
    ----------    -------
        A,S          3
        B,M          4
         C           5
         P           2
         Q           1

=back

=head2 Tree Methods

X<Complete ternary tree>Each point has 3 children, so the path is a complete
ternary tree.

=over

=item C<@n_children = $path-E<gt>tree_n_children($n)>

Return the three children of C<$n>, or an empty list if C<$n E<lt> 1>
(ie. before the start of the path).

This is simply C<3*$n-1, 3*$n, 3*$n+1>.  This is appending an extra ternary
digit 0, 1 or 2 to the mixed-radix form for N described above.  Or staying
all in ternary then appending to N+1 rather than N and adjusting back.

=item C<$num = $path-E<gt>tree_n_num_children($n)>

Return 3, since every node has three children, or return C<undef> if
C<$nE<lt>1> (ie. before the start of the path).

=item C<$n_parent = $path-E<gt>tree_n_parent($n)>

Return the parent node of C<$n>, or C<undef> if C<$n E<lt>= 1> (the top of
the tree).

This is simply C<floor(($n+1)/3)>, reversing the C<tree_n_children()>
calculation above.

=item C<$depth = $path-E<gt>tree_n_to_depth($n)>

Return the depth of node C<$n>, or C<undef> if there's no point C<$n>.  The
top of the tree at N=1 is depth=0, then its children depth=1, etc.

The structure of the tree with 3 nodes per point means the depth is
floor(log3(2N-1)), so for example N=5 through N=13 all have depth=2.

=item C<$n = $path-E<gt>tree_depth_to_n($depth)>

=item C<$n = $path-E<gt>tree_depth_to_n_end($depth)>

Return the first or last N at tree level C<$depth> in the path, or C<undef>
if nothing at that depth or not a tree.  The top of the tree is depth=0.

=back

=head2 Tree Descriptive Methods

=over

=item C<$num = $path-E<gt>tree_num_children_minimum()>

=item C<$num = $path-E<gt>tree_num_children_maximum()>

Return 3 since every node has 3 children, making that both the minimum and
maximum.

=item C<$bool = $path-E<gt>tree_any_leaf()>

Return false, since there are no leaf nodes in the tree.

=back

=head1 FORMULAS

=head2 UAD Matrices

Internally the code uses P,Q and calculates A,B at the end as necessary.
The UAD transformations in P,Q coordinates are

    U     P -> 2P-Q            ( 2 -1 )
          Q -> P               ( 1  0 )

    A     P -> 2P+Q            ( 2  1 )
          Q -> P               ( 1  0 )

    D     P -> P+2Q            ( 1  2 )
          Q -> Q unchanged     ( 0  1 )

The advantage of P,Q for the calculation is that it's 2 values instead of 3.
The transformations can be written with the 2x2 matrices shown, but explicit
steps are enough for the code.

Repeatedly applying "U" gives

    U       2P-Q, P
    U^2     3P-2Q, 2P-Q
    U^3     4P-3Q, 3P-2Q
    ...
    U^k     (k+1)P-kQ, kP-(k-1)Q
          = P+k(P-Q),  Q+k*(P-Q)

If there's a run of k many high zeros in the Nrem = N-Nrow position in the
level then they can be applied to the initial P=2,Q=1 as

    U^k    P=k+2, Q=k+1       start for k high zeros

=head2 FB Transformations

The FB tree is calculated in P,Q and converted to A,B at the end as
necessary.  Its three transformations are

    M1     P -> P+Q         ( 1  1 )
           Q -> 2Q          ( 0  2 )

    M2     P -> 2P          ( 2  0 )
           Q -> P-Q         ( 1 -1 )

    M3     P -> 2P          ( 2  0 )
           Q -> P+Q         ( 1  1 )

Price's paper shows rearrangements of a set of four values q',q,p,p'.  Just
the p and q are enough for the calculation.  The set of four has some
attractive geometric interpretations though.

=head2 X,Y to N -- UAD

C<xy_to_n()> works in P,Q coordinates.  An A,B or other input is converted
to P,Q per the formulas in L</PQ Coordinates> above.  A P,Q point can be
reversed up the UAD tree to its parent point

    if P > 3Q    reverse "D"   P -> P-2Q
                  digit=2      Q -> unchanged

    if P > 2Q    reverse "A"   P -> Q
                  digit=1      Q -> P-2Q

    otherwise    reverse "U"   P -> Q
                  digit=0      Q -> 2Q-P

This gives a ternary digit 2, 1, 0 respectively from low to high.  Those
plus a high "1" bit make N.  The number of steps is the "depth" level.

If at any stage P,Q doesn't satisfy PE<gt>QE<gt>=1, one odd, the other even,
then it means the original point, however it was converted, was not a
primitive triple.  For a primitive triple the endpoint is always P=2,Q=1.

The conditions PE<gt>3Q or PE<gt>2Q work because each matrix sends its
parent P,Q to one of three disjoint regions,

     Q                  P=Q                    P=2Q                P=3Q
     |                    *       U         ----     A        ++++++
     |                  *               ----            ++++++
     |                *             ----          ++++++
     |              *           ----        ++++++
     |            *         ----      ++++++
     |          *       ----    ++++++
     |        *     ----  ++++++                     D
     |      *   ----++++++
     |    * ----++++
     |  ----++
     |
     +------------------------------------------------- P

So U is the upper wedge, A the middle, and D the lower.  The parent P,Q can
be anywhere in PE<gt>QE<gt>=1, the matrices always map to these regions.

=head2 X,Y to N -- FB

After converting to P,Q as necessary, a P,Q point can be reversed up the FB
tree to its parent

    if P odd     reverse M1    P -> P-Q
    (Q even)                   Q -> Q/2

    if P > 2Q    reverse M2    P -> P/2
    (P even)                   Q -> P/2 - Q

    otherwise    reverse M3    P -> P/2
    (P even)                   Q -> Q - P/2

This is a little like the binary greatest common divisor algorithm, but
designed for one value odd and the other even.  Like the UAD ascent above if
at any stage P,Q doesn't satisfy PE<gt>QE<gt>=1, one odd, the other even,
then the initial point wasn't a primitive triple.

The M1 reversal works because M1 sends any parent P,Q to a child which has P
odd.  All odd P,Q comes from M1.  The M2 and M3 always make children with P
even.  Those children are divided between two disjoint regions above and
below the line P=2Q.

     Q                  P=Q                     P=2Q
     |                    *     M3 P=even   ----
     |                  *               ----
     |                *             ----
     |              *           ----
     |            *         ----              M2 P=even
     |          *       ----
     |        *     ----
     |      *   ----
     |    * ----                 M1 P=odd anywhere
     |  ----
     |
     +------------------------------------------------- P

=head2 X,Y to N -- UMT

After converting to P,Q as necessary, a P,Q point can be reversed up the UMT
tree to its parent

    if P > 2Q    reverse "U"     P -> Q
                  digit=0        Q -> 2Q-P

    if P even    reverse "M2"    P -> P/2
    (Q odd)                      Q -> P/2 - Q

    otherwise    reverse "T"     P -> P - 3 * Q/2
    (Q even)                     Q -> Q/2

These reversals work because U sends any parent P,Q to a child PE<gt>2Q
whereas the M2 and T go below that line.  M2 and T are distinguished by M2
giving P even whereas T gives P odd.

     Q                  P=Q                     P=2Q
     |                    *       U         ----
     |                  *               ----
     |                *             ----
     |              *           ----
     |            *         ----        M2 for P=even
     |          *       ----             T for P=odd
     |        *     ----
     |      *   ----
     |    * ----
     |  ----
     |
     +------------------------------------------------- P

=head2 Rectangle to N Range -- UAD

For the UAD tree, the smallest A,B within each level is found at the topmost
"U" steps for the smallest A or the bottom-most "D" steps for the smallest
B.  For example in the table above of level=2 N=5..13 the smallest A is
the top A=7,B=24, and the smallest B is in the bottom A=35,B=12.  In general

    Amin = 2*level + 1
    Bmin = 4*level

In P,Q coordinates the same topmost line is the smallest P and bottom-most
the smallest Q.  The values are

    Pmin = level+1
    Qmin = 1

The fixed Q=1 arises from the way the "D" transformation sends Q-E<gt>Q
unchanged, so every level includes a Q=1.  This means if you ask what range
of N is needed to cover all Q E<lt> someQ then there isn't one, only a P
E<lt> someP has an N to go up to.

=head2 Rectangle to N Range -- FB

For the FB tree, the smallest A,B within each level is found in the topmost
two final positions.  For example in the table above of level=2 N=5..13 the
smallest A is in the top A=9,B=40, and the smallest B is in the next row
A=35,B=12.  In general,

    Amin = 2^level + 1
    Bmin = 2^level + 4

In P,Q coordinates a Q=1 is found in that second row which is the minimum B,
and the smallest P is found by taking M1 steps half-way then a M2 step, then
M1 steps for the balance.  This is a slightly complicated

    Pmin = /  3*2^(k-1) + 1    if even level = 2*k
           \  2^(k+1) + 1      if odd level = 2*k+1
    Q = 1

The fixed Q=1 arises from the M1 steps giving

    P = 2 + 1+2+4+8+...+2^(level-2)
      = 2 + 2^(level-1) - 1
      = 2^(level-1) + 1
    Q = 2^(level-1)

    followed by M2 step
    Q -> P-Q
         = 1

As for the UAD above this means small Q's always remain no matter how big N
gets, only a P range determines an N range.

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include,

=over

L<http://oeis.org/A007051> (etc)

=back

    A007051   N start of depth=n, (3^n+1)/2, ie. tree_depth_to_n()
    A003462   N end of depth=n-1, (3^n-1)/2, ie. tree_depth_to_n_end()
    A000244   N of row middle line, 3^n

    A058529   possible values taken by abs(A-B),
                being integers with all prime factors == +/-1 mod 8

    "U" repeatedly
      A046092    coordinate B, 2n(n+1) = 4*triangular numbers
      A099776    \ coordinate C, being 2n(n+1)+1
      A001844    /  which is the "centred squares"

    "A" repeatedly
      A046727    \ coordinate A
      A084159    /   "Pell oblongs"
      A046729    coordinate B
      A001653    coordinate C, numbers n where 2*n^2-1 is square
      A000129    coordinate P and Q, the Pell numbers
      A001652    coordinate S, the smaller leg
      A046090    coordinate M, the bigger leg

    "D" repeatedly
      A000466    coordinate A, being 4*n^2-1 for n>=1

    "M1" repeatedly
      A028403    coordinate B,   binary 10..010..000
      A007582    coordinate B/4, binary 10..010..0
      A085601    coordinate C,   binary 10..010..001

    "M2" repeatedly
      A015249    \ coordinate A, binary 111000111000...
      A084152    |
      A084175    /
      A054881    coordinate B, binary 1010..1010000..00

    "M3" repeatedly
      A106624    coordinate P,Q pairs, 2^k-1,2^k

    "T" repeatedly
      A134057    coordinate A, binomial(2^n-1,2)
                   binary 111..11101000..0001
      A093357    coordinate B, binary 10111..111000..000
      A052940    \
      A055010    | coordinate P, 3*2^n-1
      A083329    |   binary 10111..111
      A153893    /

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::Hypot>,
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::CoprimeColumns>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015, 2016 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut