/usr/share/perl5/MCE/Step.pm is in libmce-perl 1.810-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 | ###############################################################################
## ----------------------------------------------------------------------------
## Parallel step model for building creative steps.
##
###############################################################################
package MCE::Step;
use strict;
use warnings;
no warnings qw( threads recursion uninitialized );
our $VERSION = '1.810';
## no critic (BuiltinFunctions::ProhibitStringyEval)
## no critic (Subroutines::ProhibitSubroutinePrototypes)
## no critic (TestingAndDebugging::ProhibitNoStrict)
use Scalar::Util qw( looks_like_number );
use MCE;
use MCE::Queue;
our @CARP_NOT = qw( MCE );
my $_has_threads = $INC{'threads.pm'} ? 1 : 0;
my $_tid = $_has_threads ? threads->tid() : 0;
sub CLONE {
$_tid = threads->tid() if $_has_threads;
}
###############################################################################
## ----------------------------------------------------------------------------
## Import routine.
##
###############################################################################
my ($_MCE, $_def, $_params, $_tag) = ({}, {}, {}, 'MCE::Step');
my ($_prev_c, $_prev_n, $_prev_t, $_prev_w) = ({}, {}, {}, {});
my ($_user_tasks, $_queue, $_last_task_id, $_lkup) = ({}, {}, {}, {});
sub import {
my ($_class, $_pkg) = (shift, caller);
my $_p = $_def->{$_pkg} = {
MAX_WORKERS => 'auto',
CHUNK_SIZE => 'auto',
FAST => 0,
};
## Import functions.
no strict 'refs'; no warnings 'redefine';
*{ $_pkg.'::mce_step_f' } = \&run_file;
*{ $_pkg.'::mce_step_s' } = \&run_seq;
*{ $_pkg.'::mce_step' } = \&run;
## Process module arguments.
while ( my $_argument = shift ) {
my $_arg = lc $_argument;
$_p->{MAX_WORKERS} = shift, next if ( $_arg eq 'max_workers' );
$_p->{CHUNK_SIZE} = shift, next if ( $_arg eq 'chunk_size' );
$_p->{TMP_DIR} = shift, next if ( $_arg eq 'tmp_dir' );
$_p->{FREEZE} = shift, next if ( $_arg eq 'freeze' );
$_p->{THAW} = shift, next if ( $_arg eq 'thaw' );
$_p->{FAST} = shift, next if ( $_arg eq 'fast' );
## Sereal 3.008+, if available, is used automatically by MCE 1.800.
if ( $_arg eq 'sereal' ) {
if ( shift eq '0' ) {
require Storable;
$_p->{FREEZE} = \&Storable::freeze;
$_p->{THAW} = \&Storable::thaw;
}
next;
}
_croak("Error: ($_argument) invalid module option");
}
$_p->{MAX_WORKERS} = MCE::Util::_parse_max_workers($_p->{MAX_WORKERS});
_validate_number($_p->{MAX_WORKERS}, 'MAX_WORKERS');
_validate_number($_p->{CHUNK_SIZE}, 'CHUNK_SIZE')
unless ($_p->{CHUNK_SIZE} eq 'auto');
return;
}
###############################################################################
## ----------------------------------------------------------------------------
## The task end callback for when a task completes.
##
###############################################################################
sub _task_end {
my ($_mce, $_task_id, $_task_name) = @_;
my $_pid = $_mce->{_init_pid}.'.'.$_mce->{_caller};
if (defined $_mce->{user_tasks}->[$_task_id + 1]) {
my $n_workers = $_mce->{user_tasks}->[$_task_id + 1]->{max_workers};
$_queue->{$_pid}[$_task_id]->enqueue((undef) x $n_workers);
}
$_params->{task_end}->($_mce, $_task_id, $_task_name)
if (exists $_params->{task_end} && ref $_params->{task_end} eq 'CODE');
return;
}
###############################################################################
## ----------------------------------------------------------------------------
## Methods for MCE; step, enq, enqp, await.
##
###############################################################################
{
no warnings 'redefine';
sub MCE::step {
my $x = shift; my $self = ref($x) ? $x : $MCE::MCE;
my $_pid = $self->{_init_pid}.'.'.$self->{_caller};
_croak('MCE::step: method is not allowed by the manager process')
unless ($self->{_wid});
my $_task_id = $self->{_task_id};
if ($_task_id < $_last_task_id->{$_pid}) {
if (scalar @_ > 1 || ref $_[0] || !defined $_[0]) {
$_queue->{$_pid}[$_task_id]->enqueue($self->freeze([ @_ ]).'1');
} else {
$_queue->{$_pid}[$_task_id]->enqueue($_[0].'0');
}
}
else {
_croak('MCE::step: method is not allowed by the last task');
}
return;
}
############################################################################
sub MCE::enq {
my $x = shift; my $self = ref($x) ? $x : $MCE::MCE;
my $_pid = $self->{_init_pid}.'.'.$self->{_caller};
my $_name = shift;
_croak('MCE::enq: method is not allowed by the manager process')
unless ($self->{_wid});
_croak('MCE::enq: (task_name) is not specified or valid')
if (!defined $_name || !exists $_lkup->{$_pid}{$_name});
_croak('MCE::enq: stepping to same task or backwards is not allowed')
if ($_lkup->{$_pid}{$_name} <= $self->{_task_id});
my $_task_id = $_lkup->{$_pid}{$_name} - 1;
if ($_task_id < $_last_task_id->{$_pid}) {
if (scalar @_ > 1) {
my @_items = map {
(ref $_ || !defined $_) ? $self->freeze([ $_ ]).'1' : $_.'0';
} @_;
$_queue->{$_pid}[$_task_id]->enqueue(@_items);
}
elsif (!defined $_[0] || ref $_[0]) {
$_queue->{$_pid}[$_task_id]->enqueue($self->freeze([ @_ ]).'1');
}
else {
$_queue->{$_pid}[$_task_id]->enqueue($_[0].'0');
}
}
else {
_croak('MCE::enq: method is not allowed by the last task');
}
return;
}
############################################################################
sub MCE::enqp {
my $x = shift; my $self = ref($x) ? $x : $MCE::MCE;
my $_pid = $self->{_init_pid}.'.'.$self->{_caller};
my ($_name, $_p) = (shift, shift);
_croak('MCE::enqp: method is not allowed by the manager process')
unless ($self->{_wid});
_croak('MCE::enqp: (task_name) is not specified or valid')
if (!defined $_name || !exists $_lkup->{$_pid}{$_name});
_croak('MCE::enqp: stepping to same task or backwards is not allowed')
if ($_lkup->{$_pid}{$_name} <= $self->{_task_id});
_croak('MCE::enqp: (priority) is not an integer')
if (!looks_like_number($_p) || int($_p) != $_p);
my $_task_id = $_lkup->{$_pid}{$_name} - 1;
if ($_task_id < $_last_task_id->{$_pid}) {
if (scalar @_ > 1) {
my @_items = map {
(ref $_ || !defined $_) ? $self->freeze([ $_ ]).'1' : $_.'0';
} @_;
$_queue->{$_pid}[$_task_id]->enqueuep($_p, @_items);
}
elsif (!defined $_[0] || ref $_[0]) {
$_queue->{$_pid}[$_task_id]->enqueuep($_p, $self->freeze([ @_ ]).'1');
}
else {
$_queue->{$_pid}[$_task_id]->enqueuep($_p, $_[0].'0');
}
}
else {
_croak('MCE::enqp: method is not allowed by the last task');
}
return;
}
############################################################################
sub MCE::await {
my $x = shift; my $self = ref($x) ? $x : $MCE::MCE;
my $_pid = $self->{_init_pid}.'.'.$self->{_caller};
my $_name = shift;
_croak('MCE::await: method is not allowed by the manager process')
unless ($self->{_wid});
_croak('MCE::await: (task_name) is not specified or valid')
if (!defined $_name || !exists $_lkup->{$_pid}{$_name});
_croak('MCE::await: awaiting from same task or backwards is not allowed')
if ($_lkup->{$_pid}{$_name} <= $self->{_task_id});
my $_task_id = $_lkup->{$_pid}{$_name} - 1; my $_t = shift || 0;
_croak('MCE::await: (threshold) is not an integer')
if (!looks_like_number($_t) || int($_t) != $_t);
if ($_task_id < $_last_task_id->{$_pid}) {
$_queue->{$_pid}[$_task_id]->await($_t);
} else {
_croak('MCE::await: method is not allowed by the last task');
}
return;
}
}
###############################################################################
## ----------------------------------------------------------------------------
## Init and finish routines.
##
###############################################################################
sub init (@) {
shift if (defined $_[0] && $_[0] eq 'MCE::Step');
my $_pkg = "$$.$_tid.".caller();
$_params->{$_pkg} = (ref $_[0] eq 'HASH') ? shift : { @_ };
@_ = ();
return;
}
sub finish (@) {
shift if (defined $_[0] && $_[0] eq 'MCE::Step');
my $_pkg = (defined $_[0]) ? shift : "$$.$_tid.".caller();
if ( $_pkg eq 'MCE' ) {
for my $_k ( keys %{ $_MCE } ) { MCE::Step->finish($_k, 1); }
}
elsif ( $_MCE->{$_pkg} && $_MCE->{$_pkg}{_init_pid} eq "$$.$_tid" ) {
$_MCE->{$_pkg}->shutdown(@_) if $_MCE->{$_pkg}{_spawned};
delete $_lkup->{$_pkg};
delete $_last_task_id->{$_pkg};
delete $_user_tasks->{$_pkg};
delete $_prev_c->{$_pkg};
delete $_prev_n->{$_pkg};
delete $_prev_t->{$_pkg};
delete $_prev_w->{$_pkg};
delete $_MCE->{$_pkg};
if (defined $_queue->{$_pkg}) {
local $_;
$_->DESTROY() for (@{ $_queue->{$_pkg} });
delete $_queue->{$_pkg};
}
}
@_ = ();
return;
}
###############################################################################
## ----------------------------------------------------------------------------
## Parallel step with MCE -- file.
##
###############################################################################
sub run_file (@) {
shift if (defined $_[0] && $_[0] eq 'MCE::Step');
my ($_file, $_pos); my $_start_pos = (ref $_[0] eq 'HASH') ? 2 : 1;
my $_pid = "$$.$_tid.".caller();
if (defined (my $_p = $_params->{$_pid})) {
delete $_p->{input_data} if (exists $_p->{input_data});
delete $_p->{sequence} if (exists $_p->{sequence});
}
else {
$_params->{$_pid} = {};
}
for my $_i ($_start_pos .. @_ - 1) {
my $_r = ref $_[$_i];
if ($_r eq '' || $_r eq 'SCALAR' || $_r =~ /^(?:GLOB|FileHandle|IO::)/) {
$_file = $_[$_i]; $_pos = $_i;
last;
}
}
if (defined $_file && ref $_file eq '' && $_file ne '') {
_croak("$_tag: ($_file) does not exist") unless (-e $_file);
_croak("$_tag: ($_file) is not readable") unless (-r $_file);
_croak("$_tag: ($_file) is not a plain file") unless (-f $_file);
$_params->{$_pid}{_file} = $_file;
}
elsif (ref $_file eq 'SCALAR' || ref($_file) =~ /^(?:GLOB|FileHandle|IO::)/) {
$_params->{$_pid}{_file} = $_file;
}
else {
_croak("$_tag: (file) is not specified or valid");
}
if (defined $_pos) {
pop @_ for ($_pos .. @_ - 1);
}
return run(@_);
}
###############################################################################
## ----------------------------------------------------------------------------
## Parallel step with MCE -- sequence.
##
###############################################################################
sub run_seq (@) {
shift if (defined $_[0] && $_[0] eq 'MCE::Step');
my ($_begin, $_end, $_pos); my $_start_pos = (ref $_[0] eq 'HASH') ? 2 : 1;
my $_pid = "$$.$_tid.".caller();
if (defined (my $_p = $_params->{$_pid})) {
delete $_p->{sequence} if (exists $_p->{sequence});
delete $_p->{input_data} if (exists $_p->{input_data});
delete $_p->{_file} if (exists $_p->{_file});
}
else {
$_params->{$_pid} = {};
}
for my $_i ($_start_pos .. @_ - 1) {
my $_ref = ref $_[$_i];
if ($_ref eq '' || $_ref eq 'HASH' || $_ref eq 'ARRAY') {
$_pos = $_i;
if ($_ref eq '') {
$_begin = $_[$_pos]; $_end = $_[$_pos + 1];
$_params->{$_pid}{sequence} = [
$_[$_pos], $_[$_pos + 1], $_[$_pos + 2], $_[$_pos + 3]
];
}
elsif ($_ref eq 'HASH') {
$_begin = $_[$_pos]->{begin}; $_end = $_[$_pos]->{end};
$_params->{$_pid}{sequence} = $_[$_pos];
}
elsif ($_ref eq 'ARRAY') {
$_begin = $_[$_pos]->[0]; $_end = $_[$_pos]->[1];
$_params->{$_pid}{sequence} = $_[$_pos];
}
last;
}
}
_croak("$_tag: (sequence) is not specified or valid")
unless (exists $_params->{$_pid}{sequence});
_croak("$_tag: (begin) is not specified for sequence")
unless (defined $_begin);
_croak("$_tag: (end) is not specified for sequence")
unless (defined $_end);
$_params->{$_pid}{sequence_run} = 1;
if (defined $_pos) {
pop @_ for ($_pos .. @_ - 1);
}
return run(@_);
}
###############################################################################
## ----------------------------------------------------------------------------
## Parallel step with MCE.
##
###############################################################################
sub run (@) {
shift if (defined $_[0] && $_[0] eq 'MCE::Step');
my $_pkg = caller() eq 'MCE::Step' ? caller(1) : caller();
my $_pid = "$$.$_tid.$_pkg";
if (ref $_[0] eq 'HASH') {
$_params->{$_pid} = {} unless defined $_params->{$_pid};
for my $_p (keys %{ $_[0] }) {
$_params->{$_pid}{$_p} = $_[0]->{$_p};
}
shift;
}
## -------------------------------------------------------------------------
my (@_code, @_name, @_thrs, @_wrks); my $_init_mce = 0; my $_pos = 0;
%{ $_lkup->{$_pid} } = ();
while (ref $_[0] eq 'CODE') {
push @_code, $_[0];
if (defined (my $_p = $_params->{$_pid})) {
push @_name, (ref $_p->{task_name} eq 'ARRAY')
? $_p->{task_name}->[$_pos] : undef;
push @_thrs, (ref $_p->{use_threads} eq 'ARRAY')
? $_p->{use_threads}->[$_pos] : undef;
push @_wrks, (ref $_p->{max_workers} eq 'ARRAY')
? $_p->{max_workers}->[$_pos] : undef;
}
$_lkup->{$_pid}{ $_name[ $_pos ] } = $_pos if (defined $_name[ $_pos ]);
$_init_mce = 1 if (
!defined $_prev_c->{$_pid}[$_pos] ||
$_prev_c->{$_pid}[$_pos] != $_code[$_pos]
);
$_init_mce = 1 if ($_prev_n->{$_pid}[$_pos] ne $_name[$_pos]);
$_init_mce = 1 if ($_prev_t->{$_pid}[$_pos] ne $_thrs[$_pos]);
$_init_mce = 1 if ($_prev_w->{$_pid}[$_pos] ne $_wrks[$_pos]);
$_prev_c->{$_pid}[$_pos] = $_code[$_pos];
$_prev_n->{$_pid}[$_pos] = $_name[$_pos];
$_prev_t->{$_pid}[$_pos] = $_thrs[$_pos];
$_prev_w->{$_pid}[$_pos] = $_wrks[$_pos];
shift; $_pos++;
}
if (defined $_prev_c->{$_pid}[$_pos]) {
pop @{ $_prev_c->{$_pid} } for ($_pos .. $#{ $_prev_c->{$_pid } });
pop @{ $_prev_n->{$_pid} } for ($_pos .. $#{ $_prev_n->{$_pid } });
pop @{ $_prev_t->{$_pid} } for ($_pos .. $#{ $_prev_t->{$_pid } });
pop @{ $_prev_w->{$_pid} } for ($_pos .. $#{ $_prev_w->{$_pid } });
$_init_mce = 1;
}
return unless (scalar @_code);
## -------------------------------------------------------------------------
my $_input_data; my $_max_workers = $_def->{$_pkg}{MAX_WORKERS};
my $_r = ref $_[0];
if ($_r eq 'ARRAY' || $_r eq 'SCALAR' || $_r =~ /^(?:GLOB|FileHandle|IO::)/) {
$_input_data = shift if (@_ == 1);
}
if (defined (my $_p = $_params->{$_pid})) {
$_max_workers = MCE::Util::_parse_max_workers($_p->{max_workers})
if (exists $_p->{max_workers} && ref $_p->{max_workers} ne 'ARRAY');
delete $_p->{sequence} if (defined $_input_data || scalar @_);
delete $_p->{user_func} if (exists $_p->{user_func});
delete $_p->{user_tasks} if (exists $_p->{user_tasks});
}
if (@_code > 1 && $_max_workers > 1) {
$_max_workers = int($_max_workers / @_code + 0.5) + 1;
}
my $_chunk_size = MCE::Util::_parse_chunk_size(
$_def->{$_pkg}{CHUNK_SIZE}, $_max_workers, $_params->{$_pid},
$_input_data, scalar @_
);
if (defined (my $_p = $_params->{$_pid})) {
if (exists $_p->{_file}) {
$_input_data = delete $_p->{_file};
} else {
$_input_data = $_p->{input_data} if exists $_p->{input_data};
}
}
## -------------------------------------------------------------------------
MCE::_save_state();
if ($_init_mce) {
$_MCE->{$_pid}->shutdown() if (defined $_MCE->{$_pid});
$_queue->{$_pid} = [] if (!defined $_queue->{$_pid});
my $_Q = $_queue->{$_pid};
pop(@{ $_Q })->DESTROY for (@_code .. @{ $_Q });
push @{ $_Q }, MCE::Queue->new(fast => $_def->{$_pkg}{FAST}, await => 1)
for (@{ $_Q } .. @_code - 2);
$_last_task_id->{$_pid} = @_code - 1;
## must clear arrays for nested session to work with Perl < v5.14
_gen_user_tasks($_pid,$_Q, [@_code],[@_name],[@_thrs],[@_wrks], $_chunk_size);
@_code = @_name = @_thrs = @_wrks = ();
my %_opts = (
max_workers => $_max_workers, task_name => $_tag,
user_tasks => $_user_tasks->{$_pid}, task_end => \&_task_end,
);
if (defined (my $_p = $_params->{$_pid})) {
local $_;
for (keys %{ $_p }) {
next if ($_ eq 'max_workers' && ref $_p->{max_workers} eq 'ARRAY');
next if ($_ eq 'task_name' && ref $_p->{task_name} eq 'ARRAY');
next if ($_ eq 'use_threads' && ref $_p->{use_threads} eq 'ARRAY');
next if ($_ eq 'chunk_size');
next if ($_ eq 'input_data');
next if ($_ eq 'sequence_run');
next if ($_ eq 'task_end');
_croak("MCE::Step: ($_) is not a valid constructor argument")
unless (exists $MCE::_valid_fields_new{$_});
$_opts{$_} = $_p->{$_};
}
}
for my $_k (qw/ tmp_dir freeze thaw /) {
$_opts{$_k} = $_def->{$_pkg}{uc($_k)}
if (exists $_def->{$_pkg}{uc($_k)} && !exists $_opts{$_k});
}
$_MCE->{$_pid} = MCE->new(pkg => $_pkg, %_opts);
}
else {
## Workers may persist after running. Thus, updating the MCE instance.
## These options do not require respawning.
if (defined (my $_p = $_params->{$_pid})) {
for my $_k (qw(
RS interval stderr_file stdout_file user_error user_output
job_delay submit_delay on_post_exit on_post_run user_args
flush_file flush_stderr flush_stdout gather max_retries
)) {
$_MCE->{$_pid}{$_k} = $_p->{$_k} if (exists $_p->{$_k});
}
}
}
## -------------------------------------------------------------------------
my @_a; my $_wa = wantarray; $_MCE->{$_pid}{gather} = \@_a if (defined $_wa);
if (defined $_input_data) {
@_ = ();
$_MCE->{$_pid}->process({ chunk_size => $_chunk_size }, $_input_data);
delete $_MCE->{$_pid}{input_data};
}
elsif (scalar @_) {
$_MCE->{$_pid}->process({ chunk_size => $_chunk_size }, \@_);
delete $_MCE->{$_pid}{input_data};
}
else {
if (defined $_params->{$_pid} && exists $_params->{$_pid}{sequence}) {
$_MCE->{$_pid}->run({
chunk_size => $_chunk_size,
sequence => $_params->{$_pid}{sequence}
}, 0);
if (exists $_params->{$_pid}{sequence_run}) {
delete $_params->{$_pid}{sequence_run};
delete $_params->{$_pid}{sequence};
}
delete $_MCE->{$_pid}{sequence};
}
else {
$_MCE->{$_pid}->run({ chunk_size => $_chunk_size }, 0);
}
}
MCE::_restore_state();
# auto-shutdown if in eval state
if ($^S || $ENV{'PERL_IPERL_RUNNING'}) {
if (!$INC{'Mojo/IOLoop.pm'} && !$INC{'Tk.pm'}) {
$_MCE->{$_pid}->shutdown();
$_->DESTROY() for @{ $_queue->{$_pid} };
delete $_queue->{$_pid};
}
}
delete $_MCE->{$_pid}{gather} if (defined $_wa);
return ((defined $_wa) ? @_a : ());
}
###############################################################################
## ----------------------------------------------------------------------------
## Private methods.
##
###############################################################################
sub _croak {
goto &MCE::_croak;
}
sub _gen_user_func {
my ($_qref, $_cref, $_chunk_size, $_pos) = @_;
my $_q_in = $_qref->[$_pos - 1];
my $_code = $_cref->[$_pos];
return sub {
my ($_mce) = @_;
$_mce->{_next_jmp} = sub { goto _MCE_STEP__NEXT; };
$_mce->{_last_jmp} = sub { goto _MCE_STEP__LAST; };
_MCE_STEP__NEXT:
while (defined (local $_ = $_q_in->dequeue())) {
if (chop $_) {
my $_args = $_mce->thaw($_); $_ = $_args->[0];
$_code->($_mce, @{ $_args });
} else {
$_code->($_mce, $_);
}
}
_MCE_STEP__LAST:
return;
};
}
sub _gen_user_tasks {
my ($_pid, $_qref, $_cref, $_nref, $_tref, $_wref, $_chunk_size) = @_;
@{ $_user_tasks->{$_pid} } = ();
push @{ $_user_tasks->{$_pid} }, {
task_name => $_nref->[0],
use_threads => $_tref->[0],
max_workers => $_wref->[0],
user_func => sub { $_cref->[0]->(@_); return; }
};
for my $_pos (1 .. @{ $_cref } - 1) {
push @{ $_user_tasks->{$_pid} }, {
task_name => $_nref->[$_pos],
use_threads => $_tref->[$_pos],
max_workers => $_wref->[$_pos],
user_func => _gen_user_func(
$_qref, $_cref, $_chunk_size, $_pos
)
};
}
return;
}
sub _validate_number {
my ($_n, $_key) = @_;
_croak("$_tag: ($_key) is not valid") if (!defined $_n);
$_n =~ s/K\z//i; $_n =~ s/M\z//i;
if (!looks_like_number($_n) || int($_n) != $_n || $_n < 1) {
_croak("$_tag: ($_key) is not valid");
}
return;
}
1;
__END__
###############################################################################
## ----------------------------------------------------------------------------
## Module usage.
##
###############################################################################
=head1 NAME
MCE::Step - Parallel step model for building creative steps
=head1 VERSION
This document describes MCE::Step version 1.810
=head1 DESCRIPTION
MCE::Step is similar to L<MCE::Flow> for writing custom apps. The main
difference comes from the transparent use of queues between sub-tasks.
MCE 1.7 adds mce_enq, mce_enqp, and mce_await methods described under
QUEUE-LIKE FEATURES below.
It is trivial to parallelize with mce_stream shown below.
## Native map function
my @a = map { $_ * 4 } map { $_ * 3 } map { $_ * 2 } 1..10000;
## Same as with MCE::Stream (processing from right to left)
@a = mce_stream
sub { $_ * 4 }, sub { $_ * 3 }, sub { $_ * 2 }, 1..10000;
## Pass an array reference to have writes occur simultaneously
mce_stream \@a,
sub { $_ * 4 }, sub { $_ * 3 }, sub { $_ * 2 }, 1..10000;
However, let's have MCE::Step compute the same in parallel. Unlike the example
in L<MCE::Flow>, the use of MCE::Queue is totally transparent. This calls for
preserving output order provided by MCE::Candy.
use MCE::Step;
use MCE::Candy;
Next are the 3 sub-tasks. Compare these 3 sub-tasks with the same as described
in L<MCE::Flow>. The call to MCE->step simplifies the passing of data to
subsequent sub-task.
sub task_a {
my @ans; my ($mce, $chunk_ref, $chunk_id) = @_;
push @ans, map { $_ * 2 } @{ $chunk_ref };
MCE->step(\@ans, $chunk_id);
}
sub task_b {
my @ans; my ($mce, $chunk_ref, $chunk_id) = @_;
push @ans, map { $_ * 3 } @{ $chunk_ref };
MCE->step(\@ans, $chunk_id);
}
sub task_c {
my @ans; my ($mce, $chunk_ref, $chunk_id) = @_;
push @ans, map { $_ * 4 } @{ $chunk_ref };
MCE->gather($chunk_id, \@ans);
}
In summary, MCE::Step builds out a MCE instance behind the scene and starts
running. The task_name (shown), max_workers, and use_threads options can take
an anonymous array for specifying the values uniquely per each sub-task.
The task_name option is required to use ->enq, ->enqp, and ->await.
my @a;
mce_step {
task_name => [ 'a', 'b', 'c' ],
gather => MCE::Candy::out_iter_array(\@a)
}, \&task_a, \&task_b, \&task_c, 1..10000;
print "@a\n";
=head1 STEP DEMO
In the demonstration below, one may call ->gather or ->step any number of times
although ->step is not allowed in the last sub-block. Data is gathered to @arr
which may likely be out-of-order. Gathering data is optional. All sub-blocks
receive $mce as the first argument.
First, defining 3 sub-tasks.
use MCE::Step;
sub task_a {
my ($mce, $chunk_ref, $chunk_id) = @_;
if ($_ % 2 == 0) {
MCE->gather($_);
# MCE->gather($_ * 4); ## Ok to gather multiple times
}
else {
MCE->print("a step: $_, $_ * $_\n");
MCE->step($_, $_ * $_);
# MCE->step($_, $_ * 4 ); ## Ok to step multiple times
}
}
sub task_b {
my ($mce, $arg1, $arg2) = @_;
MCE->print("b args: $arg1, $arg2\n");
if ($_ % 3 == 0) { ## $_ is the same as $arg1
MCE->gather($_);
}
else {
MCE->print("b step: $_ * $_\n");
MCE->step($_ * $_);
}
}
sub task_c {
my ($mce, $arg1) = @_;
MCE->print("c: $_\n");
MCE->gather($_);
}
Next, pass MCE options, using chunk_size 1, and run all 3 tasks in parallel.
Notice how max_workers and use_threads can take an anonymous array, similarly
to task_name.
my @arr = mce_step {
task_name => [ 'a', 'b', 'c' ],
max_workers => [ 2, 2, 2 ],
use_threads => [ 0, 0, 0 ],
chunk_size => 1
}, \&task_a, \&task_b, \&task_c, 1..10;
Finally, sort the array and display its contents.
@arr = sort { $a <=> $b } @arr;
print "\n@arr\n\n";
-- Output
a step: 1, 1 * 1
a step: 3, 3 * 3
a step: 5, 5 * 5
a step: 7, 7 * 7
a step: 9, 9 * 9
b args: 1, 1
b step: 1 * 1
b args: 3, 9
b args: 7, 49
b step: 7 * 7
b args: 5, 25
b step: 5 * 5
b args: 9, 81
c: 1
c: 49
c: 25
1 2 3 4 6 8 9 10 25 49
=head1 SYNOPSIS when CHUNK_SIZE EQUALS 1
Although L<MCE::Loop> may be preferred for running using a single code block,
the text below also applies to this module, particularly for the first block.
All models in MCE default to 'auto' for chunk_size. The arguments for the block
are the same as writing a user_func block using the Core API.
Beginning with MCE 1.5, the next input item is placed into the input scalar
variable $_ when chunk_size equals 1. Otherwise, $_ points to $chunk_ref
containing many items. Basically, line 2 below may be omitted from your code
when using $_. One can call MCE->chunk_id to obtain the current chunk id.
line 1: user_func => sub {
line 2: my ($mce, $chunk_ref, $chunk_id) = @_;
line 3:
line 4: $_ points to $chunk_ref->[0]
line 5: in MCE 1.5 when chunk_size == 1
line 6:
line 7: $_ points to $chunk_ref
line 8: in MCE 1.5 when chunk_size > 1
line 9: }
Follow this synopsis when chunk_size equals one. Looping is not required from
inside the first block. Hence, the block is called once per each item.
## Exports mce_step, mce_step_f, and mce_step_s
use MCE::Step;
MCE::Step::init {
chunk_size => 1
};
## Array or array_ref
mce_step sub { do_work($_) }, 1..10000;
mce_step sub { do_work($_) }, [ 1..10000 ];
## File_path, glob_ref, or scalar_ref
mce_step_f sub { chomp; do_work($_) }, "/path/to/file";
mce_step_f sub { chomp; do_work($_) }, $file_handle;
mce_step_f sub { chomp; do_work($_) }, \$scalar;
## Sequence of numbers (begin, end [, step, format])
mce_step_s sub { do_work($_) }, 1, 10000, 5;
mce_step_s sub { do_work($_) }, [ 1, 10000, 5 ];
mce_step_s sub { do_work($_) }, {
begin => 1, end => 10000, step => 5, format => undef
};
=head1 SYNOPSIS when CHUNK_SIZE is GREATER THAN 1
Follow this synopsis when chunk_size equals 'auto' or greater than 1.
This means having to loop through the chunk from inside the first block.
use MCE::Step;
MCE::Step::init { ## Chunk_size defaults to 'auto' when
chunk_size => 'auto' ## not specified. Therefore, the init
}; ## function may be omitted.
## Syntax is shown for mce_step for demonstration purposes.
## Looping inside the block is the same for mce_step_f and
## mce_step_s.
mce_step sub { do_work($_) for (@{ $_ }) }, 1..10000;
## Same as above, resembles code using the Core API.
mce_step sub {
my ($mce, $chunk_ref, $chunk_id) = @_;
for (@{ $chunk_ref }) {
do_work($_);
}
}, 1..10000;
Chunking reduces the number of IPC calls behind the scene. Think in terms of
chunks whenever processing a large amount of data. For relatively small data,
choosing 1 for chunk_size is fine.
=head1 OVERRIDING DEFAULTS
The following list options which may be overridden when loading the module.
use Sereal qw( encode_sereal decode_sereal );
use CBOR::XS qw( encode_cbor decode_cbor );
use JSON::XS qw( encode_json decode_json );
use MCE::Step
max_workers => 8, # Default 'auto'
chunk_size => 500, # Default 'auto'
tmp_dir => "/path/to/app/tmp", # $MCE::Signal::tmp_dir
freeze => \&encode_sereal, # \&Storable::freeze
thaw => \&decode_sereal, # \&Storable::thaw
fast => 1 # Default 0 (fast dequeue)
;
From MCE 1.8 onwards, Sereal 3.008+ is loaded automatically if available.
Specify C<Sereal => 0> to use Storable instead.
use MCE::Step Sereal => 0;
=head1 CUSTOMIZING MCE
=over 3
=item MCE::Step->init ( options )
=item MCE::Step::init { options }
The init function accepts a hash of MCE options. Unlike with MCE::Stream,
both gather and bounds_only options may be specified when calling init
(not shown below).
use MCE::Step;
MCE::Step::init {
chunk_size => 1, max_workers => 4,
user_begin => sub {
print "## ", MCE->wid, " started\n";
},
user_end => sub {
print "## ", MCE->wid, " completed\n";
}
};
my %a = mce_step sub { MCE->gather($_, $_ * $_) }, 1..100;
print "\n", "@a{1..100}", "\n";
-- Output
## 3 started
## 1 started
## 4 started
## 2 started
## 3 completed
## 4 completed
## 1 completed
## 2 completed
1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361
400 441 484 529 576 625 676 729 784 841 900 961 1024 1089 1156
1225 1296 1369 1444 1521 1600 1681 1764 1849 1936 2025 2116 2209
2304 2401 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481 3600
3721 3844 3969 4096 4225 4356 4489 4624 4761 4900 5041 5184 5329
5476 5625 5776 5929 6084 6241 6400 6561 6724 6889 7056 7225 7396
7569 7744 7921 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801
10000
=back
Like with MCE::Step::init above, MCE options may be specified using an
anonymous hash for the first argument. Notice how task_name, max_workers,
and use_threads can take an anonymous array for setting uniquely per
each code block.
Unlike MCE::Stream which processes from right-to-left, MCE::Step begins
with the first code block, thus processing from left-to-right.
The following takes 9 seconds to complete. The 9 seconds is from having
only 2 workers assigned for the last sub-task and waiting 1 or 2 seconds
initially before calling MCE->step.
Removing both calls to MCE->step will cause the script to complete in just
1 second. The reason is due to the 2nd and subsequent sub-tasks awaiting
data from an internal queue. Workers terminate upon receiving an undef.
use threads;
use MCE::Step;
my @a = mce_step {
task_name => [ 'a', 'b', 'c' ],
max_workers => [ 3, 4, 2, ],
use_threads => [ 1, 0, 0, ],
user_end => sub {
my ($mce, $task_id, $task_name) = @_;
MCE->print("$task_id - $task_name completed\n");
},
task_end => sub {
my ($mce, $task_id, $task_name) = @_;
MCE->print("$task_id - $task_name ended\n");
}
},
sub { sleep 1; MCE->step(""); }, ## 3 workers, named a
sub { sleep 2; MCE->step(""); }, ## 4 workers, named b
sub { sleep 3; }; ## 2 workers, named c
-- Output
0 - a completed
0 - a completed
0 - a completed
0 - a ended
1 - b completed
1 - b completed
1 - b completed
1 - b completed
1 - b ended
2 - c completed
2 - c completed
2 - c ended
=head1 API DOCUMENTATION
Although input data is optional for MCE::Step, the following assumes chunk_size
equals 1 in order to demonstrate all the possibilities of passing input data
into the code block.
=over 3
=item MCE::Step->run ( { input_data => iterator }, sub { code } )
=item mce_step { input_data => iterator }, sub { code }
An iterator reference can by specified for input_data. The only other way
is to specify input_data via MCE::Step::init. This prevents MCE::Step from
configuring the iterator reference as another user task which will not work.
Iterators are described under "SYNTAX for INPUT_DATA" at L<MCE::Core>.
MCE::Step::init {
input_data => iterator
};
mce_step sub { $_ };
=item MCE::Step->run ( sub { code }, list )
=item mce_step sub { code }, list
Input data can be defined using a list.
mce_step sub { $_ }, 1..1000;
mce_step sub { $_ }, [ 1..1000 ];
=item MCE::Step->run_file ( sub { code }, file )
=item mce_step_f sub { code }, file
The fastest of these is the /path/to/file. Workers communicate the next offset
position among themselves without any interaction from the manager process.
mce_step_f sub { $_ }, "/path/to/file";
mce_step_f sub { $_ }, $file_handle;
mce_step_f sub { $_ }, \$scalar;
=item MCE::Step->run_seq ( sub { code }, $beg, $end [, $step, $fmt ] )
=item mce_step_s sub { code }, $beg, $end [, $step, $fmt ]
Sequence can be defined as a list, an array reference, or a hash reference.
The functions require both begin and end values to run. Step and format are
optional. The format is passed to sprintf (% may be omitted below).
my ($beg, $end, $step, $fmt) = (10, 20, 0.1, "%4.1f");
mce_step_s sub { $_ }, $beg, $end, $step, $fmt;
mce_step_s sub { $_ }, [ $beg, $end, $step, $fmt ];
mce_step_s sub { $_ }, {
begin => $beg, end => $end, step => $step, format => $fmt
};
The sequence engine can compute 'begin' and 'end' items only, for the chunk,
and not the items in between (hence boundaries only). This option applies
to sequence only and has no effect when chunk_size equals 1.
The time to run is 0.006s below. This becomes 0.827s without the bounds_only
option due to computing all items in between, thus creating a very large
array. Basically, specify bounds_only => 1 when boundaries is all you need
for looping inside the block; e.g. Monte Carlo simulations.
Time was measured using 1 worker to emphasize the difference.
use MCE::Step;
MCE::Step::init {
max_workers => 1, chunk_size => 1_250_000,
bounds_only => 1
};
## For sequence, the input scalar $_ points to $chunk_ref
## when chunk_size > 1, otherwise $chunk_ref->[0].
##
## mce_step_s sub {
## my $begin = $_->[0]; my $end = $_->[-1];
##
## for ($begin .. $end) {
## ...
## }
##
## }, 1, 10_000_000;
mce_step_s sub {
my ($mce, $chunk_ref, $chunk_id) = @_;
## $chunk_ref contains 2 items, not 1_250_000
my $begin = $chunk_ref->[ 0];
my $end = $chunk_ref->[-1]; ## or $chunk_ref->[1]
MCE->printf("%7d .. %8d\n", $begin, $end);
}, 1, 10_000_000;
-- Output
1 .. 1250000
1250001 .. 2500000
2500001 .. 3750000
3750001 .. 5000000
5000001 .. 6250000
6250001 .. 7500000
7500001 .. 8750000
8750001 .. 10000000
=back
=head1 QUEUE-LIKE FEATURES
=over 3
=item MCE->step ( item )
=item MCE->step ( arg1, arg2, argN )
The ->step method is the simplest form for passing elements into the next
sub-task.
use MCE::Step;
sub provider {
MCE->step( $_, rand ) for 10 .. 19;
}
sub consumer {
my ( $mce, @args ) = @_;
MCE->printf( "%d: %d, %03.06f\n", MCE->wid, $args[0], $args[1] );
}
MCE::Step::init {
task_name => [ 'p', 'c' ],
max_workers => [ 1 , 4 ]
};
mce_step \&provider, \&consumer;
-- Output
2: 10, 0.583551
4: 11, 0.175319
3: 12, 0.843662
4: 15, 0.748302
2: 14, 0.591752
3: 16, 0.357858
5: 13, 0.953528
4: 17, 0.698907
2: 18, 0.985448
3: 19, 0.146548
=item MCE->enq ( task_name, item )
=item MCE->enq ( task_name, [ arg1, arg2, argN ] )
=item MCE->enq ( task_name, [ arg1, arg2 ], [ arg1, arg2 ] )
=item MCE->enqp ( task_name, priority, item )
=item MCE->enqp ( task_name, priority, [ arg1, arg2, argN ] )
=item MCE->enqp ( task_name, priority, [ arg1, arg2 ], [ arg1, arg2 ] )
The MCE 1.7 release enables finer control. Unlike ->step, which take multiple
arguments, the ->enq and ->enqp methods push items at the end of the array
internally. Passing multiple arguments is possible by enclosing the arguments
inside an anonymous array.
The direction of flow is forward only. Thus, stepping to itself or backwards
will cause an error.
use MCE::Step;
sub provider {
if ( MCE->wid % 2 == 0 ) {
MCE->enq( 'c', [ $_, rand ] ) for 10 .. 19;
} else {
MCE->enq( 'd', [ $_, rand ] ) for 20 .. 29;
}
}
sub consumer_c {
my ( $mce, $args ) = @_;
MCE->printf( "C%d: %d, %03.06f\n", MCE->wid, $args->[0], $args->[1] );
}
sub consumer_d {
my ( $mce, $args ) = @_;
MCE->printf( "D%d: %d, %03.06f\n", MCE->wid, $args->[0], $args->[1] );
}
MCE::Step::init {
task_name => [ 'p', 'c', 'd' ],
max_workers => [ 2 , 3 , 3 ]
};
mce_step \&provider, \&consumer_c, \&consumer_d;
-- Output
C4: 10, 0.527531
D6: 20, 0.420108
C5: 11, 0.839770
D8: 21, 0.386414
C3: 12, 0.834645
C4: 13, 0.191014
D6: 23, 0.924027
C5: 14, 0.899357
D8: 24, 0.706186
C4: 15, 0.083823
D7: 22, 0.479708
D6: 25, 0.073882
C3: 16, 0.207446
D8: 26, 0.560755
C5: 17, 0.198157
D7: 27, 0.324909
C4: 18, 0.147505
C5: 19, 0.318371
D6: 28, 0.220465
D8: 29, 0.630111
=item MCE->await ( task_name, pending_threshold )
Providers may sometime run faster than consumers. Thus, increasing memory
consumption. MCE 1.7 adds the ->await method for pausing momentarily until
the receiving sub-task reaches the minimum threshold for the number of
items pending in its queue.
use MCE::Step;
use Time::HiRes 'sleep';
sub provider {
for ( 10 .. 29 ) {
# wait until 10 or less items pending
MCE->await( 'c', 10 );
# forward item to a later sub-task ( 'c' comes after 'p' )
MCE->enq( 'c', [ $_, rand ] );
}
}
sub consumer {
my ($mce, $args) = @_;
MCE->printf( "%d: %d, %03.06f\n", MCE->wid, $args->[0], $args->[1] );
sleep 0.05;
}
MCE::Step::init {
task_name => [ 'p', 'c' ],
max_workers => [ 1 , 4 ]
};
mce_step \&provider, \&consumer;
-- Output
3: 10, 0.527307
2: 11, 0.036193
5: 12, 0.987168
4: 13, 0.998140
5: 14, 0.219526
4: 15, 0.061609
2: 16, 0.557664
3: 17, 0.658684
4: 18, 0.240932
3: 19, 0.241042
5: 20, 0.884830
2: 21, 0.902223
4: 22, 0.699223
3: 23, 0.208270
5: 24, 0.438919
2: 25, 0.268854
4: 26, 0.596425
5: 27, 0.979818
2: 28, 0.918173
3: 29, 0.358266
=back
=head1 GATHERING DATA
Unlike MCE::Map where gather and output order are done for you automatically,
the gather method is used to have results sent back to the manager process.
use MCE::Step chunk_size => 1;
## Output order is not guaranteed.
my @a = mce_step sub { MCE->gather($_ * 2) }, 1..100;
print "@a\n\n";
## Outputs to a hash instead (key, value).
my %h1 = mce_step sub { MCE->gather($_, $_ * 2) }, 1..100;
print "@h1{1..100}\n\n";
## This does the same thing due to chunk_id starting at one.
my %h2 = mce_step sub { MCE->gather(MCE->chunk_id, $_ * 2) }, 1..100;
print "@h2{1..100}\n\n";
The gather method can be called multiple times within the block unlike return
which would leave the block. Therefore, think of gather as yielding results
immediately to the manager process without actually leaving the block.
use MCE::Step chunk_size => 1, max_workers => 3;
my @hosts = qw(
hosta hostb hostc hostd hoste
);
my %h3 = mce_step sub {
my ($output, $error, $status); my $host = $_;
## Do something with $host;
$output = "Worker ". MCE->wid .": Hello from $host";
if (MCE->chunk_id % 3 == 0) {
## Simulating an error condition
local $? = 1; $status = $?;
$error = "Error from $host"
}
else {
$status = 0;
}
## Ensure unique keys (key, value) when gathering to
## a hash.
MCE->gather("$host.out", $output);
MCE->gather("$host.err", $error) if (defined $error);
MCE->gather("$host.sta", $status);
}, @hosts;
foreach my $host (@hosts) {
print $h3{"$host.out"}, "\n";
print $h3{"$host.err"}, "\n" if (exists $h3{"$host.err"});
print "Exit status: ", $h3{"$host.sta"}, "\n\n";
}
-- Output
Worker 3: Hello from hosta
Exit status: 0
Worker 2: Hello from hostb
Exit status: 0
Worker 1: Hello from hostc
Error from hostc
Exit status: 1
Worker 3: Hello from hostd
Exit status: 0
Worker 2: Hello from hoste
Exit status: 0
The following uses an anonymous array containing 3 elements when gathering
data. Serialization is automatic behind the scene.
my %h3 = mce_step sub {
...
MCE->gather($host, [$output, $error, $status]);
}, @hosts;
foreach my $host (@hosts) {
print $h3{$host}->[0], "\n";
print $h3{$host}->[1], "\n" if (defined $h3{$host}->[1]);
print "Exit status: ", $h3{$host}->[2], "\n\n";
}
Although MCE::Map comes to mind, one may want additional control when
gathering data such as retaining output order.
use MCE::Step;
sub preserve_order {
my %tmp; my $order_id = 1; my $gather_ref = $_[0];
return sub {
$tmp{ (shift) } = \@_;
while (1) {
last unless exists $tmp{$order_id};
push @{ $gather_ref }, @{ delete $tmp{$order_id++} };
}
return;
};
}
## Workers persist for the most part after running. Though, not always
## the case and depends on Perl. Pass a reference to a subroutine if
## workers must persist; e.g. mce_step { ... }, \&foo, 1..100000.
MCE::Step::init {
chunk_size => 'auto', max_workers => 'auto'
};
for (1..2) {
my @m2;
mce_step {
gather => preserve_order(\@m2)
},
sub {
my @a; my ($mce, $chunk_ref, $chunk_id) = @_;
## Compute the entire chunk data at once.
push @a, map { $_ * 2 } @{ $chunk_ref };
## Afterwards, invoke the gather feature, which
## will direct the data to the callback function.
MCE->gather(MCE->chunk_id, @a);
}, 1..100000;
print scalar @m2, "\n";
}
MCE::Step::finish;
All 6 models support 'auto' for chunk_size unlike the Core API. Think of the
models as the basis for providing JIT for MCE. They create the instance, tune
max_workers, and tune chunk_size automatically regardless of the hardware.
The following does the same thing using the Core API. Workers persist after
running.
use MCE;
sub preserve_order {
...
}
my $mce = MCE->new(
max_workers => 'auto', chunk_size => 8000,
user_func => sub {
my @a; my ($mce, $chunk_ref, $chunk_id) = @_;
## Compute the entire chunk data at once.
push @a, map { $_ * 2 } @{ $chunk_ref };
## Afterwards, invoke the gather feature, which
## will direct the data to the callback function.
MCE->gather(MCE->chunk_id, @a);
}
);
for (1..2) {
my @m2;
$mce->process({ gather => preserve_order(\@m2) }, [1..100000]);
print scalar @m2, "\n";
}
$mce->shutdown;
=head1 MANUAL SHUTDOWN
=over 3
=item MCE::Step->finish
=item MCE::Step::finish
Workers remain persistent as much as possible after running. Shutdown occurs
automatically when the script terminates. Call finish when workers are no
longer needed.
use MCE::Step;
MCE::Step::init {
chunk_size => 20, max_workers => 'auto'
};
mce_step sub { ... }, 1..100;
MCE::Step::finish;
=back
=head1 INDEX
L<MCE|MCE>, L<MCE::Core>
=head1 AUTHOR
Mario E. Roy, S<E<lt>marioeroy AT gmail DOT comE<gt>>
=cut
|