This file is indexed.

/usr/share/ncarg/nclex/ngmath/nm20n.ncl is in libncarg-data 6.3.0-13.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
;
;      $Id: nm20n.ncl,v 1.9 2010-03-15 22:49:24 haley Exp $
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;                                                                       ;
;                Copyright (C)  2000                                    ;
;        University Corporation for Atmospheric Research                ;
;                All Rights Reserved                                    ;
;                                                                       ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
;   File:         nm20n.ncl
;
;   Author:       Fred Clare
;                 National Center for Atmospheric Research
;                 PO 3000, Boulder, Colorado
;
;   Date:         Thu Jun  3 15:16:01 MDT 1999
;
;   Description:  This program illustrates the use of the triangulation
;                 and Voronoi diagram capabilities of the cssgrid package.
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;


load "$NCARG_ROOT/lib/ncarg/nclex/gsun/gsn_code.ncl"

procedure draw_box(wks:graphic, xll[1]:float, yll[1]:float, xur[1]:float,
                   yur[1]:float, cindex[1]:integer, resources:logical)
;
;  Draw a box specified by the first four arguments and fill
;  it with the color whose index is given by cindex.  The arguments
;  are assumed to be in NDC space.
;
local xcoord, ycoord, cr
begin
  xcoord = new(5,float)
  ycoord = new(5,float)
  xcoord(0) = xll
  ycoord(0) = yll 
  xcoord(1) = xur
  ycoord(1) = yll 
  xcoord(2) = xur
  ycoord(2) = yur
  xcoord(3) = xll
  ycoord(3) = yur
  xcoord(4) = xll
  ycoord(4) = yll 
  cr = resources@gsFillColor
  resources@gsFillColor = cindex
  gsn_polygon_ndc(wks, xcoord, ycoord, resources)
  resources@gsFillColor = cr
  delete(xcoord)
  delete(ycoord)
end

;
;  Main program
;
begin
 
;
;  Number of points to use for drawing arcs on the globe.
;
  NARC = 50

;
;  Input dataset on the globe (latitudes and longitudes in degrees).
;  These data points do not cover the globe, but rather are confined
;  to the nothern hemisphere and are enclosed by a boundary.
; 
  plat = (/  70.,  70., 70., 85., 60., 60., 65./)
  plon = (/-160., -70.,  0., 20., 50., 80.,140./)

;
;  Determine tha size of the input arrays; create arrays for
;  storing the Cartesian coordinate equivalents to the lat/lon input;
;  calculate the Cartesian coordinates.
;  
  fsize = dimsizes(plat)

;
;  Create the Delaunay triangulation; "triangles" is returned as
;  a two dimensional array dimensioned for fsize x 3.
;
  triangles = csstri(plat,plon)
  tri_size = dimsizes(triangles)
  num_triangles = tri_size(0)

;
;  Get the circumcenters for the Delaunay triangles and store
;  them in arrays xc, yc, and zc.  "nca" is the actual number 
;  of circles found.
;
  rlat = new(2*fsize,float)
  rlon = new(2*fsize,float)
  rc = new(2*fsize,float)
  nca = new(1,integer)
  numv = new(1,integer)
  nv = new(fsize,integer)
  csvoro(plat,plon,0,1,rlat,rlon,rc,nca,numv,nv)

;
;  Draw a plot of the triangulation, the circumcircles, and the
;  Voronoi polygons.
;

;
;  Define a color map.
;
  cmap = (/                      \
            (/ 0., 0., 0. /),    \
            (/ 1., 1., 1. /),    \
            (/ 0., 1., 1. /),    \
            (/ 1., 1., 0. /),    \
            (/ 1., 0., 0. /),    \
            (/ 0., 1., 0. /),    \
            (/ 0., .8, 0. /)     \
         /)
;
; Create a workstation.
;
  wks_type = "ncgm"
  wks = gsn_open_wks(wks_type,"nm20n")

  gsn_define_colormap(wks,cmap)

;
;  Define some resources and draw a globe as a background for 
;  the plot.
;
  map_resources = True
  map_resources@gsnFrame = False
  map_resources@mpGeophysicalLineColor = 6
  map_resources@mpGridLineColor = 0
  map_resources@mpLimbLineColor = 6
  map_resources@mpCenterLatF = 72.5
  map_resources@mpCenterLonF = 127.5
  map_resources@mpOutlineBoundarySets = "National"
  map_resources@mpNationalLineColor = 6
  map_resources@vpXF = 0.175
  map_resources@vpYF = 0.825
  map_resources@vpWidthF = 0.8
  map_resources@vpHeightF = 0.8
  map_resources@mpGreatCircleLinesOn = True
  map = gsn_map(wks,"Satellite",map_resources)

;
;  Plot the circumcircles.  Only those circles going through
;  original data values are plotted and not those going through
;  the pseudo points.
;
  arclat = new(NARC, float)
  arclon = new(NARC, float)

  gsres = True
  gsres@gsLineThicknessF = 2.
  gsres@gsLineColor = 4
  do i=4,9
    nggcog(rlat(i), rlon(i), rc(i), arclat, arclon)
    gsn_polyline(wks,map,arclon,arclat,gsres)
  end do

;
;  Draw the Voronoi polygons.
;
  gsres@gsLineColor = 3
  rlatn = new(2,float)
  rlonn = new(2,float)
  do i=0,fsize-1
    csvoro(plat,plon,i,0,rlat,rlon,rc,nca,numv,nv)
    do j=1,numv-1
      rlatn(0) = rlat(nv(j-1))
      rlonn(0) = rlon(nv(j-1))
      rlatn(1) = rlat(nv(j))
      rlonn(1) = rlon(nv(j))
      gsn_polyline(wks,map,rlonn,rlatn,gsres)
    end do
  end do

;
;  Draw the triangles.
;
  qlat = new(4,float)
  qlon = new(4,float)
  gsres@gsLineColor = 2
  do np=0,num_triangles-1
    qlat(0) = plat(triangles(np,0))
    qlon(0) = plon(triangles(np,0))
    qlat(1) = plat(triangles(np,1))
    qlon(1) = plon(triangles(np,1))
    qlat(2) = plat(triangles(np,2))
    qlon(2) = plon(triangles(np,2))
    qlat(3) = plat(triangles(np,0))
    qlon(3) = plon(triangles(np,0))
    gsn_polyline(wks,map,qlon,qlat,gsres)
  end do

;
;  Mark the original data points with yellow circles.
;
  gsres@gsFillColor = 3
  do i=0,fsize-1
    nggcog(plat(i),plon(i),1.3,arclat,arclon)
    gsn_polygon(wks,map,arclon,arclat,gsres)
  end do

;
;  Mark the circumcircle centers with green dots.
;
  gsres@gsFillColor = 5
  do i=4,9
    nggcog(rlat(i),rlon(i),0.65,arclat,arclon)
    gsn_polygon(wks,map,arclon,arclat,gsres)
  end do

;
;  Legend
;
  txres = True
  txres@txFontHeightF = 0.025
  txres@txFontColor = 1
  txres@txJust = "CenterLeft"
  draw_box(wks, 0.02, 0.945, 0.12, 0.955, 2, gsres)
  gsn_text_ndc(wks, "~F22~Delaunay triangles", 0.14, 0.95, txres)
  draw_box(wks, 0.02, 0.895, 0.12, 0.905, 3, gsres)
  gsn_text_ndc(wks, "~F22~Voronoi polygons", 0.14, 0.90, txres)
  draw_box(wks, 0.02, 0.845, 0.12, 0.855, 4, gsres)
  gsn_text_ndc(wks, "~F22~Circumcircles", 0.14, 0.85, txres)

  frame(wks)

end