/usr/share/ncarg/nclex/ngmath/nm21n.ncl is in libncarg-data 6.3.0-13.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 | ;
; $Id: nm21n.ncl,v 1.8 2010-03-15 22:49:24 haley Exp $
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; Copyright (C) 2000 ;
; University Corporation for Atmospheric Research ;
; All Rights Reserved ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; File: nm21n.ncl
;
; Author: Fred Clare
; National Center for Atmospheric Research
; PO 3000, Boulder, Colorado
;
; Date: Thu Jun 3 15:16:01 MDT 1999
;
; Description: This program illustrates the use of the interpolation
; capabilities of the cssgrid package.
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
load "$NCARG_ROOT/lib/ncarg/nclex/gsun/gsn_code.ncl"
procedure nrand(first:integer, nextn:integer, result:float)
;
; Portable random number generator. This is here in place
; of the built-in random number generator "rand"
; so that the results for this example will be the same
; as for the equivalent Fortran and C examples.
;
; Arguments
; first - is 0 if this is the first call to the procedure, 1 otherwise
; nextn - a temporary storage variable that should be the same for
; all calls.
; result - the desired random number
;
local mplier, modlus, mobymp, momdmp, hvlue, lvlue, testv
begin
mplier = 16807
modlus = 2147483647
mobymp = 127773
momdmp = 2836
if (first .eq. 0) then
nextn = 9
end if
hvlue = nextn / mobymp
lvlue = nextn%mobymp;
testv = mplier*lvlue - momdmp*hvlue;
if (testv .gt. 0) then
nextn = testv;
else
nextn = testv + modlus;
end if
result = (1. * nextn) / (1. * modlus)
end
procedure genrs(rlat[*]:float, rlon[*]:float)
;
; Generate random positions on a sphere in latitudes and longitudes
; (latitude values between -90. and 90. and longitude values
; between -180. and 180).
;
; First select a random longitude, and then select a random value
; on the Z axis -R to R (-1 to 1 in the case of the unit sphere).
; From the random Z value, calculate the latitude.
;
local size, tmpa, rslt, rz
begin
size = dimsizes(rlat)
tmpa = new(1,integer)
rslt = new(1,float)
nrand(0,tmpa,rslt)
rlon(0) = -180.+360.*rslt
nrand(1,tmpa,rslt)
rz = 2.*rslt-1.
rlat(0) = 57.29578*asin(rz)
do i=1,size-1
nrand(1,tmpa,rslt)
rlon(i) = -180.+360.*rslt
nrand(1,tmpa,rslt)
rz = 2.*rslt-1.
rlat(i) = 57.29578*asin(rz)
end do
end
function max2a(a1[*]:numeric, a2[*]:numeric)
begin
if (a1 .lt. a2) then
return(a2)
else
return(a1)
end if
end
function min2a(a1[*]:numeric, a2[*]:numeric)
begin
if (a1 .lt. a2) then
return(a1)
else
return(a2)
end if
end
procedure geni(mlow[1]:integer, mhgh[1]:integer, \
dlow[1]:float, dhgh[1]:float, space[645]:float)
;
; The procedure geni and the function genpnt are used to generate
; test ; data on the globe. The data generated will have
; approximately "mlow" lows and "mhgh" highs within each of
; the twenty areas defined by an inscribed icosahedron, a minimum
; value of approximately "dlow" and a maximum value of approximately
; "dhgh". "space" is a storage area for communication between geni
; and genpnt. geni is called to initialize the process and
; the function genpnt returns a value of the function at
; the point (rlat,rlon).
;
; The function used is a sum of exponentials.
;
; Versions of these codes were originally written in Fortran
; David Kennison at NCAR.
;
local D2R, R2D, r0, r1, r2, xcvi, ycvi, zcvi, ivof, nlow, nhgh, \
ncnt, indx, wgt1, wgt2, wgt3, wsum, xtmp, ytmp, ztmp, tmmp, \
ilon, ilat, rlon, crln, srln, rlat, crlt, srlt, rval, dist, \
angl, xcoc, ycoc, zcoc, rmul, rhgh, rlow
begin
D2R = 0.017453293
R2D = 57.295780000
r0 = (/ \
.968,.067,.478,.910,.352,.933,.654,.021,.512,.202,.940,.204, \
.379,.793,.288,.267,.357,.128,.703,.737,.803,.915,.511,.762, \
.456,.471,.300,.613,.073,.498,.220,.041,.565,.698,.951,.917, \
.630,.605,.938,.143,.807,.878,.347,.186,.671,.635,.453,.028, \
.763,.157,.765,.566,.072,.276,.328,.528,.747,.627,.141,.821, \
.126,.360,.862,.690,.058,.813,.607,.689,.419,.545,.831,.226, \
.422,.178,.412,.093,.813,.866,.121,.576,.023,.886,.142,.095, \
.162,.470,.623,.910,.097,.764,.730,.223,.124,.593,.913,.183, \
.406,.520,.871,.825,.065,.703,.051,.488,.881,.463,.581,.694, \
.329,.702,.270,.352,.587,.412,.446,.750,.882,.069,.659,.979, \
.833,.390,.202,.957,.982,.115,.140,.389,.635,.011,.213,.701, \
.714,.264,.188,.594,.727,.769,.288,.056,.471,.558,.408,.058, \
.970,.854,.808,.851,.923,.467,.830,.756,.857,.032,.713,.839, \
.147,.852,.228,.783,.863,.441,.483,.577,.705,.671,.171,.432, \
.441,.459,.489,.911,.017,.897,.969,.987,.751,.777,.838,.674, \
.244,.669,.430,.101,.701,.143,.940,.848,.995,.168,.631,.858, \
.608,.114,.435,.313,.785,.606,.746,.226,.065,.234,.137,.082, \
.131,.106,.069,.882,.883,.907,.556,.127,.576,.986,.228,.276, \
.128,.168,.124,.123 \
/)
r1 = (/ \
.023,.003,.880,.088,.237,.017,.170,.368,.123,.239,.250,.006, \
.146,.806,.134,.722,.791,.361,.998,.920,.529,.122,.043,.864, \
.877,.025,.808,.746,.442,.065,.400,.464,.068,.280,.552,.305, \
.297,.722,.673,.420,.961,.923,.426,.107,.729,.560,.829,.520, \
.921,.827,.440,.451,.950,.483,.315,.827,.508,.123,.573,.949, \
.188,.973,.414,.256,.253,.966,.561,.550,.689,.234,.970,.650, \
.157,.396,.757,.885,.956,.587,.405,.877,.414,.845,.328,.363, \
.328,.643,.190,.836,.766,.763,.786,.954,.737,.199,.211,.990, \
.165,.772,.540,.854,.006,.510,.504,.163,.906,.261,.048,.862, \
.848,.454,.740,.262,.299,.068,.625,.627,.711,.815,.464,.477, \
.579,.249,.431,.315,.449,.642,.305,.614,.414,.845,.468,.420, \
.355,.972,.582,.261,.234,.631,.123,.082,.084,.863,.343,.383, \
.930,.968,.011,.641,.784,.474,.118,.362,.723,.549,.678,.172, \
.191,.983,.786,.605,.828,.254,.024,.183,.226,.607,.444,.460, \
.237,.567,.541,.322,.430,.885,.705,.361,.853,.715,.002,.637, \
.190,.119,.999,.913,.668,.677,.085,.859,.660,.871,.464,.488, \
.124,.489,.671,.350,.095,.115,.810,.333,.683,.351,.654,.113, \
.236,.359,.473,.089,.075,.475,.726,.264,.594,.725,.177,.263, \
.402,.262,.122,.062 \
/)
r2 = (/ \
.337,.417,.503,.020,.769,.158,.133,.005,.517,.606,.094,.591, \
.081,.820,.855,.675,.545,.033,.938,.947,.294,.060,.009,.427, \
.646,.559,.684,.721,.781,.291,.892,.118,.708,.395,.138,.476, \
.552,.270,.481,.069,.877,.575,.660,.957,.395,.516,.633,.939, \
.548,.570,.886,.843,.630,.895,.270,.276,.455,.953,.998,.236, \
.244,.889,.354,.952,.284,.492,.428,.837,.762,.909,.906,.639, \
.484,.566,.596,.879,.082,.229,.818,.631,.799,.704,.473,.430, \
.600,.743,.706,.055,.696,.704,.291,.940,.593,.645,.892,.877, \
.137,.321,.714,.899,.230,.620,.538,.714,.186,.134,.593,.268, \
.364,.411,.899,.163,.116,.372,.593,.716,.115,.298,.770,.812, \
.002,.061,.752,.595,.706,.645,.472,.843,.965,.186,.742,.195, \
.806,.280,.910,.992,.414,.503,.260,.778,.915,.159,.941,.030, \
.531,.533,.746,.647,.832,.516,.458,.834,.577,.211,.429,.283, \
.855,.901,.126,.821,.087,.868,.016,.893,.148,.926,.885,.562, \
.429,.145,.340,.343,.304,.281,.374,.835,.814,.120,.482,.646, \
.636,.940,.479,.213,.151,.908,.497,.006,.809,.623,.827,.895, \
.490,.843,.788,.638,.769,.673,.200,.198,.817,.540,.541,.121, \
.821,.915,.956,.635,.035,.438,.280,.671,.377,.760,.884,.528, \
.668,.381,.534,.477 \
/)
xcvi = (/ \
.9510565162952 , -.9510565162951 , .4253254041760 , \
-.4253254041760 , .4253254041760 , -.4253254041760 , \
.4253254041760 , -.4253254041760 , .4253254041760 , \
-.4253254041760 , .4253254041760 , -.4253254041760 \
/)
ycvi = (/ \
.0000000000000 , .0000000000000 , .8506508083520 , \
-.8506508083520 , .2628655560596 , -.2628655560596 , \
-.6881909602356 , .6881909602356 , -.6881909602356 , \
.6881909602356 , .2628655560595 , -.2628655560596 \
/)
zcvi = (/ \
.0000000000000 , .0000000000000 , .0000000000000 , \
.0000000000000 , .8090169943749 , -.8090169943749 , \
.5000000000000 , -.5000000000000 , -.5000000000000 , \
.5000000000000 , -.8090169943749 , .8090169943749 \
/)
ivof = (/ \
(/0, 2, 4/) , (/0, 4, 6/) , (/0, 6, 8/) , \
(/0, 8,10/) , (/0, 2,10/) , (/2, 7,10/) , \
(/2, 7, 9/) , (/2, 4, 9/) , (/4, 9,11/) , \
(/4, 6,11/) , (/6, 3,11/) , (/3, 6, 8/) , \
(/3, 5, 8/) , (/5, 8,10/) , (/5, 7,10/) , \
(/5, 1, 7/) , (/1, 3, 5/) , (/1, 3,11/) , \
(/1, 9,11/) , (/1, 7, 9/) \
/)
nlow = max2a(0,min2a(4,mlow))
nhgh = max2a(0,min2a(4,mhgh))
ncnt = 20*(nlow+nhgh)
space(644) = 1.*ncnt
do k=0,ncnt-1
indx = k%20
wgt1 = r0(k)
wgt2 = r1(k)
wgt3 = r2(k)
wsum = wgt1+wgt2+wgt3
wgt1 = wgt1/wsum
wgt2 = wgt2/wsum
wgt3 = wgt3/wsum
xtmp = wgt1*xcvi(ivof(indx,0)) + \
wgt2*xcvi(ivof(indx,1)) + \
wgt3*xcvi(ivof(indx,2))
ytmp = wgt1*ycvi(ivof(indx,0)) + \
wgt2*ycvi(ivof(indx,1)) + \
wgt3*ycvi(ivof(indx,2))
ztmp = wgt1*zcvi(ivof(indx,0)) + \
wgt2*zcvi(ivof(indx,1)) + \
wgt3*zcvi(ivof(indx,2))
temp = sqrt(xtmp*xtmp +ytmp*ytmp + ztmp*ztmp)
space(160+k) = xtmp/temp
space(320+k) = ytmp/temp
space(480+k) = ztmp/temp
end do
bp = 20*nlow-1
space(0:bp) = -1.
space(bp+1:ncnt-1) = 1.
space(640) = dlow;
space(641) = dhgh;
space(642) = 1.e+36;
space(643) = -1.e+36;
xcoc = space(160:160+ncnt-1)
ycoc = space(320:320+ncnt-1)
zcoc = space(480:480+ncnt-1)
rmul = space(0:ncnt-1)
rhgh = space(641)
rlow = space(640)
do i=0,71
ilon = -180.+5.*i
rlon = D2R * 1.*ilon
crln = cos(rlon)
srln = sin(rlon)
do j=0,34
rlat = D2R*(-85.+5.*j)
crlt = cos(rlat)
srlt = sin(rlat)
rval = 0.5*(rhgh+rlow)
dist = sqrt((crln*crlt-xcoc)^2 + (srln*crlt-ycoc)^2 + (srlt-zcoc)^2)
angl = 2.*R2D*asin(0.5*dist)
dist = angl/18.
tval = 0.5*(rhgh-rlow)*rmul*2.7182818^(-dist*dist)*(2.-sin(6.283*dist)/2.)
rval = rval + sum(tval)
space(642) = min2a(space(642),rval)
space(643) = max2a(space(643),rval)
end do
end do
end
function genpnt(rlat[1]:float, rlon[1]:float, space[645]:float)
;
; This function returns a functional value at the specified
; lat/lon coordinate. The function is determined by the
; initial call to geni (see above).
;
local crlt, crln, srln, srlt, rval, dist, angl, ncnt, R2D, \
xcoc, ycoc, zcoc, rmul, rhgh, rlow
begin
R2D = 57.295780000
crlt = cos(rlat)
crln = cos(rlon)
srlt = sin(rlat)
srln = sin(rlon)
rhgh = space(641)
rlow = space(640)
ncnt = floattointeger(space(644))
xcoc = space(160:160+ncnt-1)
ycoc = space(320:320+ncnt-1)
zcoc = space(480:480+ncnt-1)
rmul = space(0:ncnt-1)
rval = 0.5*(rhgh+rlow)
dist = sqrt((crln*crlt-xcoc)^2 + (srln*crlt-ycoc)^2 + (srlt-zcoc)^2)
angl = 2.*R2D*asin(0.5*dist)
dist = angl/18.
tval = 0.5*(rhgh-rlow)*rmul*2.7182818^(-dist*dist)*(2.-sin(6.283*dist)/2.)
rval = rval + sum(tval)
return(space(640)+(space(641)-space(640))* \
(rval-space(642))/(space(643)-space(642)))
end
;
; Main program
;
begin
D2R = 0.017453293
R2D = 57.295780000
;
; Define random points and functional values on the globe,
; triangulate, interpolate to a uniform grid, then draw a
; contour plot on a map.
;
;
; Number of input data values.
;
N = 500
;
; Number of points to use for drawing arcs on the globe.
;
NARC = 50
;
; Array sizes for the interpolation grid.
;
NI = 73
NJ = 145
;
; Generate a default set of nodes as latitudinal and longitudinal
; coordinates (latitudes in the range -90. to 90. and longitudes
; in the range -180. to 180).
;
rlat = new(N,float)
rlon = new(N,float)
genrs(rlat, rlon)
;
; Generate functional values at the input nodes.
;
fval = new(N,float)
tmp_space = new(645,float)
geni(5, 10, -200., 500., tmp_space)
do i=0,N-1
fval(i) = genpnt(D2R*rlat(i), D2R*rlon(i), tmp_space)
end do
;
; Create the triangulation.
;
triangles = csstri(rlat,rlon)
tri_sizes = dimsizes(triangles)
num_triangles = tri_sizes(0)
;
; Get the circumcenters for the Delaunay triangles and store
; them in arrays plat and plon. "nca" is the actual number
; of circles found.
;
plat = new(2*N,float)
plon = new(2*N,float)
rc = new(2*N,float)
nca = new(1,integer)
numv = new(1,integer)
nv = new(N,integer)
csvoro(rlat,rlon,0,1,plat,plon,rc,nca,numv,nv)
; Draw a plot of the triangulation and the Voronoi polygons.
;
;
; Define a color map and open a workstation.
;
cmap = (/ \
(/ 1., 1., 1. /), \
(/ 0., 0., 0. /), \
(/ 1., 0., 0. /), \
(/ 0., 0., 1. /), \
(/ 1., 0., 0. /), \
(/ 0., 1., 0. /), \
(/ 0., .8, 0. /), \
(/ .65, .65, .65 /) \
/)
wks_type = "ncgm"
wks = gsn_open_wks(wks_type,"nm21n")
gsn_define_colormap(wks,cmap)
;
; Define some resources and draw a globe as a background for
; the plot.
;
map_resources = True
map_resources@gsnFrame = False
map_resources@mpOutlineBoundarySets = "National"
map_resources@mpNationalLineColor = 1
map_resources@mpGeophysicalLineColor = 7
map_resources@mpLimbLineColor = 7
map_resources@mpGridLineColor = 0
map_resources@mpGridAndLimbDrawOrder = "PreDraw"
map_resources@mpCenterLatF = 40.
map_resources@mpCenterLonF = -105.
map_resources@vpXF = 0.06
map_resources@vpYF = 0.90
map_resources@vpWidthF = 0.88
map_resources@vpHeightF = 0.88
map_resources@mpSatelliteDistF = 4.0
map_resources@mpGreatCircleLinesOn = True
map = gsn_map(wks,"Satellite",map_resources)
;
; Draw the Voronoi polygons.
;
gsres = True
gsres@gsLineColor = 3
rlatn = new(2,float)
rlonn = new(2,float)
do i=0,N-1
csvoro(rlat,rlon,i,0,plat,plon,rc,nca,numv,nv)
do j=1,numv-1
rlatn(0) = plat(nv(j-1))
rlonn(0) = plon(nv(j-1))
rlatn(1) = plat(nv(j))
rlonn(1) = plon(nv(j))
gsn_polyline(wks,map,rlonn,rlatn,gsres)
end do
end do
;
; Draw the triangles.
;
qlat = new(4,float)
qlon = new(4,float)
gsres@gsLineColor = 2
do np=0,num_triangles-1
qlat(0) = rlat(triangles(np,0))
qlon(0) = rlon(triangles(np,0))
qlat(1) = rlat(triangles(np,1))
qlon(1) = rlon(triangles(np,1))
qlat(2) = rlat(triangles(np,2))
qlon(2) = rlon(triangles(np,2))
qlat(3) = rlat(triangles(np,0))
qlon(3) = rlon(triangles(np,0))
gsn_polyline(wks,map,qlon,qlat,gsres)
end do
;
; Mark the original data points with black circles.
;
gsres@gsLineColor = 1
arclat = new(NARC, float)
arclon = new(NARC, float)
do i=0,N-1
do j=1,6
nggcog(rlat(i),rlon(i),0.15*j,arclat,arclon)
gsn_polyline(wks,map,arclon,arclat,gsres)
end do
end do
;
; Title
;
txres = True
txres@txFontHeightF = 0.035
txres@txFontColor = 1
txres@txJust = "CenterCenter"
gsn_text_ndc(wks, "~F26~Triangulation", 0.5, 0.95, txres)
frame(wks)
;
; Set up the latitudes and longitudes for the interpolated grid.
;
platn = new(NI,float)
plonn = new(NJ,float)
do i=0,NI-1
platn(i) = -90.+i*2.5
end do
do j=0,NJ-1
plonn(j) = -180.+j*2.5
end do
;
; Interpolate to the regular grid.
;
ff = cssgrid(rlat,rlon,fval,platn,plonn)
;
; Draw a contour map of the interpolated values using the same
; map projection and resource settings as used for drawing the
; triangulation above.
;
map_resources = True
map_resources@mpOutlineBoundarySets = "National"
map_resources@mpOutlineSpecifiers = "USStatesLand"
map_resources@mpNationalLineColor = 7
map_resources@mpUSStateLineColor = 7
map_resources@mpGeophysicalLineColor = 7
map_resources@cnLineColor = 3
map_resources@cnLevelSelectionMode = "AutomaticLevels"
map_resources@cnLevelSpacingF = 40.
map_resources@cnMaxLevelCount = 16
map_resources@cnLineLabelPlacementMode = "Constant"
map_resources@cnLineLabelFontHeightF = 0.01
map_resources@cnLineLabelInterval = 5
map_resources@cnLevelFlags = (/ 1,1,1,1,3,1,1,1,1,3,1,1,1,1,3,1,1,1,1,3 /)
map_resources@cnLineLabelFontColor = 3
map_resources@cnLineLabelFont = 13
map_resources@cnInfoLabelOn = False
map_resources@mpCenterLatF = 40.
map_resources@mpCenterLonF = -105.
map_resources@vpXF = 0.06
map_resources@vpYF = 0.90
map_resources@vpWidthF = 0.88
map_resources@vpHeightF = 0.88
map_resources@mpProjection = "Satellite"
map_resources@mpSatelliteDistF = 4.
map_resources@sfXCStartV = -180.
map_resources@sfXCEndV = 180.
map_resources@sfYCStartV = -90.
map_resources@sfYCEndV = 90.
map_resources@cnSmoothingOn = True
map_resources@cnSmoothingTensionF = 0.02
map_resources@mpGridLineColor = 0
map_resources@mpLimbLineColor = 3
map_resources@mpGridAndLimbDrawOrder = "PreDraw"
map = gsn_contour_map(wks,ff,map_resources)
;
; Title
;
txres = True
txres@txFontHeightF = 0.035
txres@txFontColor = 1
txres@txJust = "CenterCenter"
gsn_text_ndc(wks, "~F26~Contour Plot of Gridded Data", 0.5, 0.95, txres)
frame(wks)
end
|