This file is indexed.

/usr/include/opengm/graphicalmodel/weights.hxx is in libopengm-dev 2.3.6+20160905-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#ifndef OPENGM_LEARNING_WEIGHTS
#define OPENGM_LEARNING_WEIGHTS

#include <opengm/opengm.hxx>

namespace opengm{
namespace learning{

    /*
    template<class T>
    class Weights {
    public:

        typedef T ValueType;

        Weights(const size_t numberOfWeights=0)
        :   weights_(numberOfWeights)
        {

        }

        ValueType getWeight(const size_t pi)const{
            OPENGM_ASSERT_OP(pi,<,weights_.size());
            return weights_[pi];
        }

        void setWeight(const size_t pi,const ValueType value){
            OPENGM_ASSERT_OP(pi,<,weights_.size());
            weights_[pi] = value;
        }

        const ValueType& operator[](const size_t pi)const{
            return weights_[pi];
        }

        ValueType& operator[](const size_t pi) {
            return weights_[pi];
        }

        size_t numberOfWeights()const{
            return weights_.size();
        }

        size_t size()const{
            return weights_.size();
        }

    private:

        std::vector<ValueType> weights_;
    };
    */
    template<class T>
    class Weights : public marray::Vector<T>
    {
    public:

        typedef T ValueType;

        Weights(const size_t numberOfWeights=0)
        :   marray::Vector<T>(numberOfWeights)
        {

        }

        ValueType getWeight(const size_t pi)const{
            OPENGM_ASSERT_OP(pi,<,this->size());
            return (*this)[pi];
        }

        void setWeight(const size_t pi,const ValueType value){
            OPENGM_ASSERT_OP(pi,<,this->size());
            (*this)[pi] = value;
        }


        size_t numberOfWeights()const{
            return this->size();
        }

    private:

        //std::vector<ValueType> weights_;
    };


    template<class T>
    class WeightRegularizer{
    public:
        enum RegularizationType{
            NoRegularizer=-1,
            L1Regularizer=1,
            L2Regularizer=2
        };

        WeightRegularizer(const int regularizationNorm, const double lambda=1.0)
        :   regularizationType_(),
            lambda_(lambda){
            if(regularizationNorm==-1){
                regularizationType_ = NoRegularizer;
            }
            else if(regularizationNorm==1){
                regularizationType_ = L1Regularizer;
            }
            else if(regularizationNorm==2){
                regularizationType_ = L2Regularizer;
            }
            else{
                throw opengm::RuntimeError("regularizationNorm must be -1 (NONE), 1 (L1) or 2 (L2)");
            }
        }
        WeightRegularizer(const RegularizationType regularizationType=L2Regularizer, const double lambda=1.0)
        :   regularizationType_(regularizationType),
            lambda_(lambda){

        }

        double lambda()const{
            return lambda_;
        }

        RegularizationType regularizationType()const{
            return regularizationType_;
        }

        int regularizerNorm()const{
            return static_cast<int>(regularizationType_);
        }

        double evaluate(const Weights<T> & weights){
            if(regularizationType_== NoRegularizer){
                return 0.0;
            }
            else if(regularizationType_ == L1Regularizer){
                double val = 0.0;
                for(size_t wi=0; wi<weights.size(); ++wi){
                    val += std::abs(weights[wi]);
                }
                return val*lambda_;
            }
            else { //if(regularizationType_ == L2Regularizer){
                double val = 0.0;
                for(size_t wi=0; wi<weights.size(); ++wi){
                    val += std::pow(weights[wi], 2);
                }
                return val*lambda_;
            }
        }

    private:
        RegularizationType regularizationType_;
        double lambda_;
    };


    template<class T>
    class WeightConstraints{
    public:

        WeightConstraints(const size_t nWeights = 0)
        :   wLowerBounds_(nWeights,-1.0*std::numeric_limits<T>::infinity()),
            wUpperBounds_(nWeights, 1.0*std::numeric_limits<T>::infinity()),
            cLowerBounds_(),
            cUpperBounds_(),
            cOffset_(0),
            cStart_(),
            cSize_(),
            cIndices_(),
            cCoeff_(){

        }
        template<class ITER_LB, class ITER_UB>
        WeightConstraints(ITER_LB lbBegin, ITER_LB lbEnd, ITER_UB ubBegin)
        :   wLowerBounds_(lbBegin,lbEnd),
            wUpperBounds_(ubBegin, ubBegin + std::distance(lbBegin, lbEnd)),
            cLowerBounds_(),
            cUpperBounds_(),
            cOffset_(0),
            cStart_(),
            cSize_(),
            cIndices_(),
            cCoeff_()
        {

        }   
        // query
        size_t numberOfConstraints()const{
            return cStart_.size();
        }

        T weightLowerBound(const size_t wi)const{
            return wLowerBounds_[wi];
        }
        T weightUpperBound(const size_t wi)const{
            return wUpperBounds_[wi];
        }

        const std::vector<T> & weightLowerBounds()const{
            return wLowerBounds_;
        }
        const std::vector<T> & weightUpperBounds()const{
            return wUpperBounds_;
        }


        size_t constraintSize(const size_t ci)const{
            return cSize_[ci];
        }
        T constraintLowerBound(const size_t ci)const{
            return cLowerBounds_[ci];
        }
        T constraintUpperBound(const size_t ci)const{
            return cUpperBounds_[ci];
        }

        const std::vector<size_t> & constraintSizes()const{
            return cLowerBounds_;
        }
        const std::vector<T> & constraintLowerBounds()const{
            return cLowerBounds_;
        }
        const std::vector<T> & constraintUpperBounds()const{
            return cUpperBounds_;
        }

        //  modification
        template<class ITER_LB>
        void setLowerBounds(ITER_LB lbBegin, ITER_LB lbEnd){
            wLowerBounds_.assign(lbBegin, lbEnd);
        }

        template<class ITER_UB>
        void setUpperBounds(ITER_UB ubBegin, ITER_UB ubEnd){
            wUpperBounds_.assign(ubBegin, ubEnd);
        }

        template<class ITER_INDICES, class ITER_COEFF>
        void addConstraint(ITER_INDICES indicesBegin, ITER_INDICES indicesEnd, ITER_COEFF coeffBegin, const T lowerBound, const T upperBound){
            // length of this constraint
            const size_t cSize = std::distance(indicesBegin, indicesEnd);
            // store length of constraint
            cSize_.push_back(cSize);

            // store offset / index in 'cIndices_' and 'cCoeff_'
            cStart_.push_back(cOffset_);

            // increment the cOffset_ for the next constraint which
            // could be added by the user
            cOffset_ +=cSize;

            // copy indices and coefficients
            for( ;indicesBegin!=indicesEnd; ++indicesBegin,++coeffBegin){
                cIndices_.push_back(*indicesBegin);
                cCoeff_.push_back(*coeffBegin);
            }
        }

    private:
        // w upper-lower bound
        std::vector<T> wLowerBounds_;
        std::vector<T> wUpperBounds_;
        // constraints 
        std::vector<T> cLowerBounds_;
        std::vector<T> cUpperBounds_;

        size_t cOffset_;
        std::vector<size_t> cStart_;
        std::vector<size_t> cSize_;
        std::vector<size_t> cIndices_;
        std::vector<T>      cCoeff_;
    };


} // namespace learning
} // namespace opengm






#endif /* OPENGM_LEARNING_WEIGHTS */