This file is indexed.

/usr/include/opengm/inference/alphabetaswap.hxx is in libopengm-dev 2.3.6+20160905-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#pragma once
#ifndef OPENGM_ALPHABEATSWAP_HXX
#define OPENGM_ALPHABETASWAP_HXX

#include <vector>

#include "opengm/inference/inference.hxx"
#include "opengm/inference/visitors/visitors.hxx"

namespace opengm {

/// Alpha-Beta-Swap Algorithm
/// \ingroup inference
template<class GM, class INF>
class AlphaBetaSwap : public Inference<GM, typename INF::AccumulationType> {
public:
   typedef GM GraphicalModelType;
   typedef INF InferenceType;
   typedef typename INF::AccumulationType AccumulationType;
   OPENGM_GM_TYPE_TYPEDEFS;
   typedef opengm::visitors::VerboseVisitor<AlphaBetaSwap<GM,INF> > VerboseVisitorType;
   typedef opengm::visitors::EmptyVisitor<AlphaBetaSwap<GM,INF> >   EmptyVisitorType;
   typedef opengm::visitors::TimingVisitor<AlphaBetaSwap<GM,INF> >  TimingVisitorType;


    template<class _GM>
    struct RebindGm{
        typedef typename INF:: template RebindGm<_GM>::type RebindedInf;
        typedef AlphaBetaSwap<_GM, RebindedInf> type;
    };

    template<class _GM,class _ACC>
    struct RebindGmAndAcc{
        typedef typename INF:: template RebindGmAndAcc<_GM,_ACC>::type RebindedInf;
        typedef AlphaBetaSwap<_GM, RebindedInf> type;
    };


    struct Parameter {
        Parameter() {
            maxNumberOfIterations_ = 1000;
        }
        template<class P>
        Parameter(const P & p)
        :   parameter_(p.parameter_),
            maxNumberOfIterations_(maxNumberOfIterations_){
        }

        typename InferenceType::Parameter parameter_; 
        size_t maxNumberOfIterations_; 
    };

   AlphaBetaSwap(const GraphicalModelType&, Parameter = Parameter());
   std::string name() const;
   const GraphicalModelType& graphicalModel() const;
   InferenceTermination infer();
   template<class VISITOR>
   InferenceTermination infer(VISITOR & );
   void reset();
   void setStartingPoint(typename std::vector<LabelType>::const_iterator);
   InferenceTermination arg(std::vector<LabelType>&, const size_t = 1) const;

private:
   const GraphicalModelType& gm_;
   Parameter parameter_;
   std::vector<LabelType> label_;
   size_t alpha_;
   size_t beta_;
   size_t maxState_;
   void increment();
   void addUnary(INF&, const size_t var, const ValueType v0, const ValueType v1);
   void addPairwise(INF&, const size_t var1, const size_t var2, const ValueType v0, const ValueType v1, const ValueType v2, const ValueType v3);
};

// reset assumes that the structure of the graphical model has not changed
template<class GM, class INF>
inline void
AlphaBetaSwap<GM, INF>::reset() {
   alpha_ = 0;
   beta_ = 0;
   std::fill(label_.begin(),label_.end(),0);
}

template<class GM, class INF>
inline void
AlphaBetaSwap<GM, INF>::increment() {
   if (++beta_ >= maxState_) {
      if (++alpha_ >= maxState_ - 1) {
         alpha_ = 0;
      }
      beta_ = alpha_ + 1;
   }
   OPENGM_ASSERT(alpha_ < maxState_);
   OPENGM_ASSERT(beta_ < maxState_);
   OPENGM_ASSERT(alpha_ < beta_);
}

template<class GM, class INF>
inline std::string
AlphaBetaSwap<GM, INF>::name() const {
   return "Alpha-Beta-Swap";
}

template<class GM, class INF>
inline const typename AlphaBetaSwap<GM, INF>::GraphicalModelType&
AlphaBetaSwap<GM, INF>::graphicalModel() const {
   return gm_;
}

template<class GM, class INF>
inline AlphaBetaSwap<GM, INF>::AlphaBetaSwap
(
   const GraphicalModelType& gm,
   Parameter para
)
:  gm_(gm)
{
   parameter_ = para;
   label_.resize(gm_.numberOfVariables(), 0);
   alpha_ = 0;
   beta_ = 0;
   for (size_t j = 0; j < gm_.numberOfFactors(); ++j) {
      if (gm_[j].numberOfVariables() > 2) {
         throw RuntimeError("This implementation of Alpha-Beta-Swap supports only factors of order <= 2.");
      }
   }
   maxState_ = 0;
   for (size_t i = 0; i < gm_.numberOfVariables(); ++i) {
      size_t numSt = gm_.numberOfLabels(i);
      if (numSt > maxState_)
         maxState_ = numSt;
   }
}

template<class GM, class INF>
inline void
AlphaBetaSwap<GM,INF>::setStartingPoint
(
   typename std::vector<typename AlphaBetaSwap<GM,INF>::LabelType>::const_iterator begin
) {
   try{
      label_.assign(begin, begin+gm_.numberOfVariables());
   }
   catch(...) {
      throw RuntimeError("unsuitable starting point");
   }
}

template<class GM, class INF>
inline void
AlphaBetaSwap<GM, INF>::addUnary
(
   INF& inf,
   const size_t var1,
   const ValueType v0,
   const ValueType v1
) {
   const size_t shape[] = {2};
   const size_t vars[] = {var1};
   opengm::IndependentFactor<ValueType,IndexType,LabelType> fac(vars, vars + 1, shape, shape + 1);
   fac(0) = v0;
   fac(1) = v1;
   inf.addFactor(fac);
}

template<class GM, class INF>
inline void
AlphaBetaSwap<GM, INF>::addPairwise
(
   INF& inf,
   const size_t var1,
   const size_t var2,
   const ValueType v0,
   const ValueType v1,
   const ValueType v2,
   const ValueType v3
) {
   const size_t shape[] = {2, 2};
   const size_t vars[] = {var1, var2};
   opengm::IndependentFactor<ValueType,IndexType,LabelType> fac(vars, vars + 2, shape, shape + 2);
   fac(0, 0) = v0;
   fac(0, 1) = v1;
   fac(1, 0) = v2;
   fac(1, 1) = v3;
   OPENGM_ASSERT(v1 + v2 - v0 - v3 >= 0);
   inf.addFactor(fac);
}
template<class GM, class INF>
InferenceTermination
AlphaBetaSwap<GM, INF>::infer() {
   EmptyVisitorType v;
   return infer(v);
}

template<class GM, class INF>
template<class VISITOR>
InferenceTermination
AlphaBetaSwap<GM, INF>::infer
(
   VISITOR & visitor
) {
   bool exitInf=false;
   visitor.begin(*this);
   size_t it = 0;
   size_t countUnchanged = 0;
   size_t numberOfVariables = gm_.numberOfVariables();
   std::vector<size_t> variable2Node(numberOfVariables, 0);
   ValueType energy = gm_.evaluate(label_);
   size_t vecA[1];
   size_t vecB[1];
   size_t vecAA[2];
   size_t vecAB[2];
   size_t vecBA[2];
   size_t vecBB[2];
   size_t vecAX[2];
   size_t vecBX[2];
   size_t vecXA[2];
   size_t vecXB[2];
   size_t numberOfLabelPairs = maxState_*(maxState_ - 1)/2;
   while (it++ < parameter_.maxNumberOfIterations_ && countUnchanged < numberOfLabelPairs && exitInf == false) {
      increment();
      size_t counter = 0;
      std::vector<size_t> numFacDim(4, 0);
      for (size_t i = 0; i < numberOfVariables; ++i) {
         if (label_[i] == alpha_ || label_[i] == beta_) {
            variable2Node[i] = counter++;
         }
      }
      if (counter == 0) {
         continue;
      }
      INF inf(counter, numFacDim);
      vecA[0] = alpha_;
      vecB[0] = beta_;
      vecAA[0] = alpha_;
      vecAA[1] = alpha_;
      vecBB[0] = beta_;
      vecBB[1] = beta_;
      vecBA[0] = beta_;
      vecBA[1] = alpha_;
      vecAB[0] = alpha_;
      vecAB[1] = beta_;
      vecAX[0] = alpha_;
      vecBX[0] = beta_;
      vecXA[1] = alpha_;
      vecXB[1] = beta_;
      for (size_t k = 0; k < gm_.numberOfFactors(); ++k) {
         const FactorType& factor = gm_[k];
         if (factor.numberOfVariables() == 1) {
            size_t var = factor.variableIndex(0);
            size_t node = variable2Node[var];
            if (label_[var] == alpha_ || label_[var] == beta_) {
               OPENGM_ASSERT(alpha_ < gm_.numberOfLabels(var));
               OPENGM_ASSERT(beta_ < gm_.numberOfLabels(var));
               addUnary(inf, node, factor(vecA), factor(vecB));
               //inf.addUnary(node, factor(vecA), factor(vecB));
            }
         } else if (factor.numberOfVariables() == 2) {
            size_t var1 = factor.variableIndex(0);
            size_t var2 = factor.variableIndex(1);
            size_t node1 = variable2Node[var1];
            size_t node2 = variable2Node[var2];

            if ((label_[var1] == alpha_ || label_[var1] == beta_) && (label_[var2] == alpha_ || label_[var2] == beta_)) {
               addPairwise(inf, node1, node2, factor(vecAA), factor(vecAB), factor(vecBA), factor(vecBB));
               //inf.addPairwise(node1, node2, factor(vecAA), factor(vecAB), factor(vecBA), factor(vecBB));
            } else if ((label_[var1] == alpha_ || label_[var1] == beta_) && (label_[var2] != alpha_ && label_[var2] != beta_)) {
               vecAX[1] = vecBX[1] = label_[var2];
               addUnary(inf, node1, factor(vecAX), factor(vecBX));
               //inf.addUnary(node1, factor(vecAX), factor(vecBX));
            } else if ((label_[var2] == alpha_ || label_[var2] == beta_) && (label_[var1] != alpha_ && label_[var1] != beta_)) {
               vecXA[0] = vecXB[0] = label_[var1];
               addUnary(inf, node2, factor(vecXA), factor(vecXB));
               //inf.addUnary(node2, factor(vecXA), factor(vecXB));
            }
         }
      }
      std::vector<LabelType> state; //(counter);
      inf.infer();
      inf.arg(state);
      OPENGM_ASSERT(state.size() == counter);
      for (size_t var = 0; var < numberOfVariables; ++var) {
         if (label_[var] == alpha_ || label_[var] == beta_) {
            if (state[variable2Node[var]] == 0)
               label_[var] = alpha_;
            else
               label_[var] = beta_;
         } else {
            //do nothing
         }
      }
      ValueType energy2 = gm_.evaluate(label_);
      if( visitor(*this) != visitors::VisitorReturnFlag::ContinueInf ){
         exitInf=true;
      }
      OPENGM_ASSERT(!AccumulationType::ibop(energy2, energy));
      if (AccumulationType::bop(energy2, energy)) {
         energy = energy2;
      } else {
         ++countUnchanged;
      }
   }
   visitor.end(*this);
   return NORMAL;
}

template<class GM, class INF>
inline InferenceTermination
AlphaBetaSwap<GM, INF>::arg(std::vector<LabelType>& arg, const size_t n) const {
   if (n > 1) {
      return UNKNOWN;
   } else {
      OPENGM_ASSERT(label_.size() == gm_.numberOfVariables());
      arg.resize(label_.size());
      for (size_t i = 0; i < label_.size(); ++i)
         arg[i] = label_[i];
      return NORMAL;
   }
}

} // namespace opengm

#endif // #ifndef OPENGM_ALPHABEATSWAP_HXX