This file is indexed.

/usr/include/opengm/inference/alphaexpansionfusion.hxx is in libopengm-dev 2.3.6+20160905-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
#pragma once
#ifndef OPENGM_ALPHAEXPANSIONFUSION_HXX
#define OPENGM_ALPHAEXPANSIONSUSION_HXX

#include "opengm/inference/inference.hxx"
#include "opengm/inference/visitors/visitors.hxx"
#include "opengm/inference/fix-fusion/fusion-move.hpp"
#include "QPBO.h"

namespace opengm {

/// Alpha-Expansion-Fusion Algorithm
/// uses the code of Alexander Fix to reduce the higer order moves to binary pairwise problems which are solved by QPBO as described in
/// Alexander Fix, Artinan Gruber, Endre Boros, Ramin Zabih:  A Graph Cut Algorithm for Higher Order Markov Random Fields, ICCV 2011
///
/// Corresponding author: Joerg Hendrik Kappes
///
/// \ingroup inference
template<class GM, class ACC>
class AlphaExpansionFusion : public Inference<GM, ACC>
{
public:
   typedef GM GraphicalModelType; 
   typedef ACC AccumulationType;
   OPENGM_GM_TYPE_TYPEDEFS;
   typedef visitors::VerboseVisitor<AlphaExpansionFusion<GM,ACC> > VerboseVisitorType;
   typedef visitors::EmptyVisitor<AlphaExpansionFusion<GM,ACC> >   EmptyVisitorType;
   typedef visitors::TimingVisitor<AlphaExpansionFusion<GM,ACC> >  TimingVisitorType;

    template<class _GM>
    struct RebindGm{
        typedef AlphaExpansionFusion<_GM, ACC> type;
    };

    template<class _GM,class _ACC>
    struct RebindGmAndAcc{
        typedef AlphaExpansionFusion<_GM, _ACC> type;
    };

    struct Parameter {
        enum LabelingIntitialType {DEFAULT_LABEL, RANDOM_LABEL, 
                                   LOCALOPT_LABEL, EXPLICIT_LABEL};
        enum OrderType {DEFAULT_ORDER, RANDOM_ORDER, 
                        EXPLICIT_ORDER};


        Parameter
        (
            const size_t maxNumberOfSteps  = 1000
        )
        :   maxNumberOfSteps_(maxNumberOfSteps),
            labelInitialType_(DEFAULT_LABEL),
            orderType_(DEFAULT_ORDER),
            randSeedOrder_(0),
            randSeedLabel_(0),
            labelOrder_(),
            label_()
        {}

        template<class P>
        Parameter
        (
            const P & p
        )
        :   maxNumberOfSteps_(p.maxNumberOfSteps_),
            labelInitialType_(p.labelInitialType_),
            orderType_(p.orderType_),
            randSeedOrder_(p.randSeedOrder_),
            randSeedLabel_(p.randSeedLabel_),
            labelOrder_(p.labelOrder_),
            label_(p.labelOrder_)
        {}

        size_t maxNumberOfSteps_;
        LabelingIntitialType labelInitialType_;
        OrderType orderType_;
        unsigned int randSeedOrder_;
        unsigned int randSeedLabel_;
        std::vector<LabelType> labelOrder_;
        std::vector<LabelType> label_;
   };

   AlphaExpansionFusion(const GraphicalModelType&, Parameter para = Parameter());

   std::string name() const;
   const GraphicalModelType& graphicalModel() const;
   template<class StateIterator>
      void setState(StateIterator, StateIterator);
   InferenceTermination infer();
   void reset();
   template<class Visitor>
      InferenceTermination infer(Visitor& visitor);
   void setStartingPoint(typename std::vector<LabelType>::const_iterator);
   InferenceTermination arg(std::vector<LabelType>&, const size_t = 1) const;

private:
   const GraphicalModelType& gm_;
   Parameter parameter_; 
   static const size_t maxOrder_ =10;
   std::vector<LabelType> label_;
   std::vector<LabelType> labelList_;
   size_t maxState_;
   size_t alpha_;
   size_t counter_;
   void incrementAlpha();
   void setLabelOrder(std::vector<LabelType>& l);
   void setLabelOrderRandom(unsigned int);
   void setInitialLabel(std::vector<LabelType>& l);
   void setInitialLabelLocalOptimal();
   void setInitialLabelRandom(unsigned int);
   template<class INF>
   void addUnary(INF&, const size_t var, const ValueType v0, const ValueType v1);
   template<class INF>
   void addPairwise(INF&, const size_t var1, const size_t var2, const ValueType v0, const ValueType v1, const ValueType v2, const ValueType v3);
};

template<class GM, class ACC>
inline std::string
AlphaExpansionFusion<GM, ACC>::name() const
{
   return "Alpha-Expansion-Fusion";
}

template<class GM, class ACC>
inline const typename AlphaExpansionFusion<GM, ACC>::GraphicalModelType&
AlphaExpansionFusion<GM, ACC>::graphicalModel() const
{
   return gm_;
}

template<class GM, class ACC>
template<class StateIterator>
inline void
AlphaExpansionFusion<GM, ACC>::setState
(
   StateIterator begin,
   StateIterator end
)
{
   label_.assign(begin, end);
}

template<class GM, class ACC>
inline void
AlphaExpansionFusion<GM,ACC>::setStartingPoint
(
   typename std::vector<typename AlphaExpansionFusion<GM,ACC>::LabelType>::const_iterator begin
) {
   try{
      label_.assign(begin, begin+gm_.numberOfVariables());
   }
   catch(...) {
      throw RuntimeError("unsuitable starting point");
   }
}

template<class GM, class ACC>
inline
AlphaExpansionFusion<GM, ACC>::AlphaExpansionFusion
(
   const GraphicalModelType& gm,
   Parameter para
)
:  gm_(gm),
   parameter_(para),
   maxState_(0)
{
   for(size_t j=0; j<gm_.numberOfFactors(); ++j) {
      if(gm_[j].numberOfVariables() > maxOrder_) {
         throw RuntimeError("This implementation of Alpha-Expansion-Fusion supports only factors of this order! Increase the constant maxOrder_!");
      }
   }
   for(size_t i=0; i<gm_.numberOfVariables(); ++i) {
      size_t numSt = gm_.numberOfLabels(i);
      if(numSt > maxState_) {
         maxState_ = numSt;
      }
   }

   if(parameter_.labelInitialType_ == Parameter::RANDOM_LABEL) {
      setInitialLabelRandom(parameter_.randSeedLabel_);
   }
   else if(parameter_.labelInitialType_ == Parameter::LOCALOPT_LABEL) {
      setInitialLabelLocalOptimal();
   }
   else if(parameter_.labelInitialType_ == Parameter::EXPLICIT_LABEL) {
      setInitialLabel(parameter_.label_);
   }
   else{
      label_.resize(gm_.numberOfVariables(), 0);
   }


   if(parameter_.orderType_ == Parameter::RANDOM_ORDER) {
      setLabelOrderRandom(parameter_.randSeedOrder_);
   }
   else if(parameter_.orderType_ == Parameter::EXPLICIT_ORDER) {
      setLabelOrder(parameter_.labelOrder_);
   }
   else{
      labelList_.resize(maxState_);
      for(size_t i=0; i<maxState_; ++i)
         labelList_[i] = i;
   }

   counter_ = 0;
   alpha_   = labelList_[counter_];
}

// reset assumes that the structure of
// the graphical model has not changed
template<class GM, class ACC>
inline void
AlphaExpansionFusion<GM, ACC>::reset() {
   if(parameter_.labelInitialType_ == Parameter::RANDOM_LABEL) {
      setInitialLabelRandom(parameter_.randSeedLabel_);
   }
   else if(parameter_.labelInitialType_ == Parameter::LOCALOPT_LABEL) {
      setInitialLabelLocalOptimal();
   }
   else if(parameter_.labelInitialType_ == Parameter::EXPLICIT_LABEL) {
      setInitialLabel(parameter_.label_);
   }
   else{
      std::fill(label_.begin(),label_.end(),0);
   }


   if(parameter_.orderType_ == Parameter::RANDOM_ORDER) {
      setLabelOrderRandom(parameter_.randSeedOrder_);
   }
   else if(parameter_.orderType_ == Parameter::EXPLICIT_ORDER) {
      setLabelOrder(parameter_.labelOrder_);
   }
   else{
      for(size_t i=0; i<maxState_; ++i)
         labelList_[i] = i;
   }
   counter_ = 0;
   alpha_   = labelList_[counter_];
}

template<class GM, class ACC>
template<class INF>
inline void
AlphaExpansionFusion<GM, ACC>::addUnary
(
   INF& inf,
   const size_t var1,
   const ValueType v0,
   const ValueType v1
) {
   inf.AddUnaryTerm((int) (var1), v0, v1);
}

template<class GM, class ACC>
template<class INF>
inline void
AlphaExpansionFusion<GM, ACC>::addPairwise
(
   INF& inf,
   const size_t var1,
   const size_t var2,
   const ValueType v0,
   const ValueType v1,
   const ValueType v2,
   const ValueType v3
) {
   inf.AddPairwiseTerm((int) (var1), (int)(var2),v0,v1,v2,v3);
}

template<class GM, class ACC>
inline InferenceTermination
AlphaExpansionFusion<GM, ACC>::infer()
{
   EmptyVisitorType visitor;
   return infer(visitor);
}

template<class GM, class ACC>
template<class Visitor>
InferenceTermination
AlphaExpansionFusion<GM, ACC>::infer
(
   Visitor& visitor
)
{
   bool exitInf = false;
   size_t it = 0;
   size_t countUnchanged = 0;
//   size_t numberOfVariables = gm_.numberOfVariables();
//   std::vector<size_t> variable2Node(numberOfVariables);
   //ValueType energy = gm_.evaluate(label_);
   //visitor.begin(*this,energy,this->bound(),0);
   visitor.begin(*this);
/*
   LabelType vecA[1];
   LabelType vecX[1];
   LabelType vecAA[2];
   LabelType vecAX[2];
   LabelType vecXA[2];
   LabelType vecXX[2];
*/
   while(it++ < parameter_.maxNumberOfSteps_ && countUnchanged < maxState_ && exitInf == false) {
      // DO MOVE 
      unsigned int maxNumAssignments = 1 << maxOrder_;
      std::vector<ValueType> coeffs(maxNumAssignments);
      std::vector<LabelType> cliqueLabels(maxOrder_);

      HigherOrderEnergy<ValueType, maxOrder_> hoe;
      hoe.AddVars(gm_.numberOfVariables());
      for(IndexType f=0; f<gm_.numberOfFactors(); ++f){
         IndexType size = gm_[f].numberOfVariables();
         if (size == 0) {
            continue;
         } else if (size == 1) {
            IndexType var = gm_[f].variableIndex(0);
            ValueType e0 = gm_[f](&label_[var]);
            ValueType e1 = gm_[f](&alpha_);
            hoe.AddUnaryTerm(var, e1 - e0);
         } else {

            // unsigned int numAssignments = std::pow(2,size);
            unsigned int numAssignments = 1 << size;
            // -- // ValueType coeffs[numAssignments];
            for (unsigned int subset = 1; subset < numAssignments; ++subset) {
               coeffs[subset] = 0;
            }
            // For each boolean assignment, get the clique energy at the 
            // corresponding labeling
            // -- // LabelType cliqueLabels[size];
            for(unsigned int assignment = 0;  assignment < numAssignments; ++assignment){
               for (unsigned int i = 0; i < size; ++i) {
                  // only true for each second assigment?!?
                  //if (    assignment%2 ==  (std::pow(2,i))%2  )
                  if (assignment & (1 << i)) { 
                     cliqueLabels[i] = alpha_;
                  } else {
                     cliqueLabels[i] = label_[gm_[f].variableIndex(i)];
                  }
               }
               ValueType energy = gm_[f](cliqueLabels.begin());
               for (unsigned int subset = 1; subset < numAssignments; ++subset){
                  // if (assigment%2 != subset%2)
                  if (assignment & ~subset) {
                     continue;
                  } 
                  //(assigment%2 == subset%2)
                  else {
                     int parity = 0;
                     for (unsigned int b = 0; b < size; ++b) {
                        parity ^=  (((assignment ^ subset) & (1 << b)) != 0);
                     }
                     coeffs[subset] += parity ? -energy : energy;
                  }
               }
            }
            typename HigherOrderEnergy<ValueType, maxOrder_> ::VarId vars[maxOrder_];
            for (unsigned int subset = 1; subset < numAssignments; ++subset) {
               int degree = 0;
               for (unsigned int b = 0; b < size; ++b) {
                  if (subset & (1 << b)) {
                     vars[degree++] = gm_[f].variableIndex(b);
                  }
               }
               std::sort(vars, vars+degree);
               hoe.AddTerm(coeffs[subset], degree, vars);
            }
         }
      }  
      kolmogorov::qpbo::QPBO<ValueType>  qr(gm_.numberOfVariables(), 0); 
      hoe.ToQuadratic(qr);
      qr.Solve();
      IndexType numberOfChangedVariables = 0;
      for (IndexType i = 0; i < gm_.numberOfVariables(); ++i) {
         int label = qr.GetLabel(i);
         if (label == 1) {
            label_[i] = alpha_;
            ++numberOfChangedVariables;
         } 
      }
      
      OPENGM_ASSERT(gm_.numberOfVariables() == label_.size());
      //ValueType energy2 = gm_.evaluate(label_);
      if(numberOfChangedVariables>0){
         //energy=energy2;
         countUnchanged = 0;
      }else{
         ++countUnchanged;
      }
      //visitor(*this,energy2,this->bound(),"alpha",alpha_);
      if( visitor(*this) != visitors::VisitorReturnFlag::ContinueInf ){
         exitInf = true;
      }
      // OPENGM_ASSERT(!AccumulationType::ibop(energy2, energy));
      incrementAlpha();
      OPENGM_ASSERT(alpha_ < maxState_);
   } 
   //visitor.end(*this,energy,this->bound(),0);
   visitor.end(*this);
   return NORMAL; 
   /*
      while(it++ < parameter_.maxNumberOfSteps_ && countUnchanged < maxState_) {
         size_t numberOfAuxiliaryNodes = 0;
         for(size_t k=0 ; k<gm_.numberOfFactors(); ++k) {
            const FactorType& factor = gm_[k];
            if(factor.numberOfVariables() == 2) {
               size_t var1 = factor.variableIndex(0);
               size_t var2 = factor.variableIndex(1);
               if(label_[var1] != label_[var2] && label_[var1] != alpha_ && label_[var2] != alpha_ ) {
                  ++numberOfAuxiliaryNodes;
               }
            }
         }
         std::vector<size_t> numFacDim(4, 0);

         kolmogorov::qpbo::QPBO<ValueType >  inf(numberOfVariables + numberOfAuxiliaryNodes, gm_.numberOfFactors()); 
         inf.AddNode(numberOfVariables + numberOfAuxiliaryNodes);
         size_t varX = numberOfVariables;
         size_t countAlphas = 0;
         for (size_t k=0 ; k<gm_.numberOfVariables(); ++k) {
            if (label_[k] == alpha_ ) {
               addUnary(inf, k, 0, std::numeric_limits<ValueType>::infinity());
               ++countAlphas;
            }
         }
         if(countAlphas < gm_.numberOfVariables()) {
            for (size_t k=0 ; k<gm_.numberOfFactors(); ++k) {
               const  FactorType& factor = gm_[k];
               if(factor.numberOfVariables() == 1) {
                  size_t var = factor.variableIndex(0);
                  vecA[0] = alpha_;
                  vecX[0] = label_[var];
                  if (label_[var] != alpha_ ) {
                     addUnary(inf, var, factor(vecX), factor(vecA));
                  }
               }
               else if (factor.numberOfVariables() == 2) {
                  size_t var1 = factor.variableIndex(0);
                  size_t var2 = factor.variableIndex(1);
                  std::vector<IndexType> vars(2); vars[0]=var1;vars[1]=var2;
                  vecAA[0] = vecAA[1] = alpha_;
                  vecAX[0] = alpha_;       vecAX[1] = label_[var2];
                  vecXA[0] = label_[var1]; vecXA[1] = alpha_;
                  vecXX[0] = label_[var1]; vecXX[1] = label_[var2];
                  if(label_[var1]==alpha_ && label_[var2]==alpha_) {
                     continue;
                  }
                  else if(label_[var1]==alpha_) {
                     addUnary(inf, var2, factor(vecAX), factor(vecAA));
                  }
                  else if(label_[var2]==alpha_) {
                     addUnary(inf, var1, factor(vecXA), factor(vecAA));
                  }
                  else if(label_[var1]==label_[var2]) {
                     addPairwise(inf, var1, var2, factor(vecXX), factor(vecXA), factor(vecAX), factor(vecAA));
                  }
                  else{
                     OPENGM_ASSERT(varX < numberOfVariables + numberOfAuxiliaryNodes);
                     addPairwise(inf, var1, varX, 0, factor(vecXA), 0, 0);
                     addPairwise(inf, var2, varX, 0, factor(vecAX), 0, 0);
                     addUnary(inf, varX, factor(vecXX), factor(vecAA));
                     ++varX;
                  }
               }
            }
            inf.MergeParallelEdges();
            inf.Solve();
       
            for(size_t var=0; var<numberOfVariables ; ++var) {
               int b = inf.GetLabel(var);
               if (label_[var] != alpha_ && b==1) {
                  label_[var] = alpha_;
               }
               OPENGM_ASSERT(label_[var] < gm_.numberOfLabels(var));
            }
         }
         OPENGM_ASSERT(gm_.numberOfVariables() == label_.size());
         ValueType energy2 = gm_.evaluate(label_);
         visitor(*this,energy,this->bound(),alpha_);
         // OPENGM_ASSERT(!AccumulationType::ibop(energy2, energy));
         if(AccumulationType::bop(energy2, energy)) {
            energy=energy2;
            countUnchanged = 0;
         }
         else{
            ++countUnchanged;
         }
         incrementAlpha();
         OPENGM_ASSERT(alpha_ < maxState_);
      }
   }
   visitor.end(*this,energy,this->bound(),0);
   return NORMAL; 
*/
}

template<class GM, class ACC>
inline InferenceTermination
AlphaExpansionFusion<GM, ACC>::arg
(
   std::vector<LabelType>& arg,
   const size_t n
) const
{
   if(n > 1) {
      return UNKNOWN;
   }
   else {
      OPENGM_ASSERT(label_.size() == gm_.numberOfVariables());
      arg.resize(label_.size());
      for(size_t i=0; i<label_.size(); ++i) {
         arg[i] = label_[i];
      }
      return NORMAL;
   }
}

template<class GM, class ACC>
inline void
AlphaExpansionFusion<GM, ACC>::setLabelOrder
(
   std::vector<LabelType>& l
) {
   if(l.size() == maxState_) {
      labelList_=l;
   }
}

template<class GM, class ACC>
inline void
AlphaExpansionFusion<GM, ACC>::setLabelOrderRandom
(
   unsigned int seed
) {
   srand(seed);
   labelList_.resize(maxState_);
   for (size_t i=0; i<maxState_;++i) {
      labelList_[i]=i;
   }
   random_shuffle(labelList_.begin(), labelList_.end());
}

template<class GM, class ACC>
inline void
AlphaExpansionFusion<GM, ACC>::setInitialLabel
(
   std::vector<LabelType>& l
) {
   label_.resize(gm_.numberOfVariables());
   if(l.size() == label_.size()) {
      for(size_t i=0; i<l.size();++i) {
         if(l[i]>=gm_.numberOfLabels(i)) return;
      }
      for(size_t i=0; i<l.size();++i) {
         label_[i] = l[i];
      }
   }
}

template<class GM, class ACC>
inline void
AlphaExpansionFusion<GM, ACC>::setInitialLabelLocalOptimal() {
   label_.resize(gm_.numberOfVariables(), 0);
   std::vector<size_t> accVec;
   for(size_t i=0; i<gm_.numberOfFactors();++i) {
      if(gm_[i].numberOfVariables()==1) {
         std::vector<size_t> state(1, 0);
         ValueType value = gm_[i](state.begin());
         for(state[0]=1; state[0]<gm_.numberOfLabels(i); ++state[0]) {
            if(AccumulationType::bop(gm_[i](state.begin()), value)) {
               value = gm_[i](state.begin());
               label_[i] = state[0];
            }
         }
      }
   }
}

template<class GM, class ACC>
inline void
AlphaExpansionFusion<GM, ACC>::setInitialLabelRandom
(
   unsigned int seed
) {
   srand(seed);
   label_.resize(gm_.numberOfVariables());
   for(size_t i=0; i<gm_.numberOfVariables();++i) {
      label_[i] = rand() % gm_.numberOfLabels(i);
   }
}

template<class GM, class ACC>
inline void
AlphaExpansionFusion<GM, ACC>::incrementAlpha() {
   counter_ = (counter_+1) % maxState_;
   alpha_ = labelList_[counter_];
}

} // namespace opengm

#endif // #ifndef OPENGM_ALPHAEXPANSIONFUSION_HXX