This file is indexed.

/usr/include/opengm/inference/cgc.hxx is in libopengm-dev 2.3.6+20160905-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
#pragma once
#ifndef OPENGM_CGC_HXX
#define OPENGM_CGC_HXX

#include <vector>
#include <string>
#include <iostream>
#include <fstream>

#include <boost/format.hpp>
#include <boost/unordered_set.hpp>

#include "opengm/opengm.hxx"
#include "opengm/inference/visitors/visitors.hxx"
#include "opengm/inference/inference.hxx"
#include "opengm/inference/movemaker.hxx"
#include "opengm/datastructures/buffer_vector.hxx"


#include "opengm/inference/cgc/submodel2.hxx"
#include "opengm/inference/cgc/generate_starting_point.hxx"



namespace opengm {
 
namespace detail_gcg{

   /**
    * run connected component labeling of nodes in gm in place
    * given colors in labels.
    * --> dense relabeling
    */
   template<class GM,class LABELS_ITER>
   typename GM::IndexType getCCFromLabels(
      const GM & gm,
      LABELS_ITER  labels
   ){
      typedef typename GM::IndexType IndexType;
      typedef typename GM::LabelType LabelType;

      // merge with UFD
      opengm::Partition<IndexType> ufd(gm.numberOfVariables());
      for(IndexType vi=0;vi<gm.numberOfVariables();++vi){
         const LabelType label=labels[vi];
         const IndexType numFacVar = static_cast<IndexType>(gm.numberOfFactors(vi));
         for(IndexType f=0;f<numFacVar;++f){
            const IndexType fi        = gm.factorOfVariable(vi,f);
            const IndexType numVarFac = gm[fi].numberOfVariables();
            for(size_t v=0;v<numVarFac;++v){
               const IndexType vi2=gm[fi].variableIndex(v);
               const LabelType label2=labels[vi2];
               if(vi!=vi2 && label==label2){
                  ufd.merge(vi,vi2);
               }
            }
         }
      }
      std::map<IndexType,IndexType> repLabeling;
      ufd.representativeLabeling(repLabeling);
      const size_t numberOfCCs=ufd.numberOfSets();

      for(IndexType vi=0;vi<gm.numberOfVariables();++vi){
         IndexType findVi=ufd.find(vi);
         IndexType denseRelabling=repLabeling[findVi];
         labels[vi]=denseRelabling;
      }
      return numberOfCCs;
   }

   /**
    * toFind: colors of interest
    * container: where to search in (a node coloring) 
    * position: index into container for an anchor, has length of toFind
    *           (undefined if not found)
    * found: length of toFind, whether this color was found
    */
   template<class CT,class C,class FP,class F>
   void findFirst(
      const CT & toFind,
      const C & container,
      FP & position,
      F & found
   ){
      typedef typename CT::value_type ToFindType;
      typedef typename FP::value_type ResultTypePosition;
      // fill map with positions of values to find 
      typedef std::map<ToFindType,size_t> MapType;
      typedef typename MapType::const_iterator MapIter;
      MapType toFindPosition;
      for(size_t i=0;i<toFind.size();++i){
         toFindPosition.insert(std::pair<ToFindType,size_t>(toFind[i],i));
         found[i]=false;
      }

      // find values
      size_t numFound=0;
      for(size_t i=0;i<container.size();++i){
         const ToFindType value = container[i];
         MapIter findVal=toFindPosition.find(value);

         if( findVal!=toFindPosition.end()){
            const size_t posInToFind = findVal->second;
            if(found[posInToFind]==false){
               position[posInToFind]=static_cast<ResultTypePosition>(i);
               found[posInToFind]=true;
               numFound+=1;
            }
            if(numFound==toFind.size()){
               break;
            }
         }
      }
   } 
}


/// \brief Experimental Multicut 
///
template<class GM, class ACC>
class CGC : public Inference<GM, ACC>
{
public:

   typedef ACC AccumulationType;
   typedef GM GraphicalModelType;
   OPENGM_GM_TYPE_TYPEDEFS;
   typedef visitors::VerboseVisitor<CGC<GM,ACC> > VerboseVisitorType;
   typedef visitors::EmptyVisitor<CGC<GM,ACC> >   EmptyVisitorType;
   typedef visitors::TimingVisitor<CGC<GM,ACC> >  TimingVisitorType;

   typedef std::pair<int,ValueType> IVPairType;
   typedef PottsFunction<ValueType,IndexType,LabelType> PfType;

   typedef  GraphicalModel<ValueType, Adder, PfType , typename GM::SpaceType> PottsGmType;

   class Parameter {
   public:
      Parameter(
         const bool planar           = true,
         const size_t maxIterations  = 1,
         const bool useBookkeeping   = true,
         const double threshold      = 0.0, 
         const bool startFromThreshold = true,
         const bool doCutMove = true,
         const bool doGlueCutMove = true
      ):
         planar_(planar),
         maxIterations_(maxIterations),
         useBookkeeping_(useBookkeeping),
         threshold_(threshold),
         startFromThreshold_(startFromThreshold),
         doCutMove_(doCutMove),
         doGlueCutMove_(doGlueCutMove_)
      {}
      
      bool planar_;
      size_t maxIterations_;
      bool useBookkeeping_;
      double threshold_;
      bool startFromThreshold_;
      bool doCutMove_;
      bool doGlueCutMove_;



   };

   CGC(const GraphicalModelType&, const Parameter&  param = Parameter());
   std::string name() const;
   const GraphicalModelType& graphicalModel() const;
   void reset();
   
   ValueType bound() const {
      return bound_+energyOffset_;
   }
   ValueType value() const {
      return value_+energyOffset_;
   }
   ValueType calcBound(){ return 0; }

   InferenceTermination infer();
   template<class VisitorType>
   InferenceTermination infer(VisitorType&);
   virtual InferenceTermination arg(std::vector<LabelType>&, const size_t = 1) const;
   
   void setStartingPoint(typename std::vector<LabelType>::const_iterator);

   ValueType evalPrimal() const;
   ValueType evalPrimal2(const std::vector<LabelType>&) const;


   ~CGC(){
      delete submodel_;
   }


   private:
   bool inRecursive2Coloring()const{
      return inRecursive2Coloring_;
   }
   bool inGreedy2Coloring()const{
      return inGreedy2Coloring_;
   }
   
   void findActiveFactors(std::vector<IndexType> activeFactors){
      activeFactors.clear();
      for(IndexType fi=0;fi<numDualVar_;++fi){
         if(argDual_[fi]!=0)
            activeFactors.push_back(fi);
      }
   }
      
   LabelType setStartingPointFromArgPrimal(const bool fillQ);

   void primalToDual();
   ValueType evalDual()const;

   template<class VISITOR>
   void recursive2Coloring(VISITOR & visitor);

   template<class VISITOR>
   void greedy2ColoringPlanar(VISITOR & visitor);


   const GraphicalModelType& gmRaw_;

   PottsGmType gm_;

   Parameter param_;

   std::vector<ValueType> lambdas_;

   SubmodelCGC<PottsGmType> * submodel_;

   // redundant data for easy readability
   IndexType numVar_;
   IndexType numDualVar_;

   // current value and naive bound
   ValueType value_;
   ValueType bound_;

   // current primal and dual arg
   // and the current max Color in arg Primal
   std::vector<LabelType> argPrimal_;
   std::vector<LabelType> argDual_;
   IndexType maxColor_;

   //  deque for recursive 2 coloring
   std::deque<IndexType> toSplit_; 

   // current state of the alg.
   bool inRecursive2Coloring_;
   bool inGreedy2Coloring_;
   
   ValueType energyOffset_;


   std::vector<unsigned char> dirtyFactors_;

   std::string log_;

   bool timeout_;
};


   
template<class GM, class ACC>
inline
CGC<GM, ACC>::CGC
(
      const GraphicalModelType& gm,
      const Parameter& parameter
)
:  gmRaw_(gm),
   gm_(gm.space()),
   param_(parameter),
   //lambdas_(gm.numberOfFactors()),
   //submodel_(gm,3,1),
   numVar_(gm.numberOfVariables()),
   //numDualVar_(gm.numberOfFactors()),
   value_(0),
   bound_(0),
   argPrimal_(gm.numberOfVariables(),0),
   //argDual_(gm.numberOfFactors(),0),
   toSplit_(),
   inRecursive2Coloring_(false),
   inGreedy2Coloring_(false),
   energyOffset_(0),
   timeout_(false)
   //dirtyFactors_(gm_.numberOfFactors(),1))
{
   //////////////////////////////////////
   // find all double edges
   ///////////////////////////////////////// 

   typedef  std::map<UInt64Type,ValueType>  MapType;
   MapType factorMap;
   
   LabelType lAA[]={0,0};
   LabelType lAB[]={0,1};

   for(IndexType fi=0;fi<gm.numberOfFactors();++fi){

      const ValueType o = gm[fi].operator()(lAA);
      const ValueType l = gm[fi].operator()(lAB)-o;
      energyOffset_ += o;

      const UInt64Type key = gm[fi].variableIndex(0)*gm.numberOfVariables() + gm[fi].variableIndex(1);

      if(factorMap.find(key)==factorMap.end() ){
         // factor is not yet added
         factorMap[key]=l;
      }
      else{
         factorMap[key]+=l;
      }

   }

   // iterate over map to add all non-double edge factors to gm_
   for(typename MapType::const_iterator iter=factorMap.begin(); iter!=factorMap.end(); ++iter){
      const UInt64Type key   = iter->first;
      const ValueType lambda = iter->second;

      const UInt64Type v0 = key/gm.numberOfVariables();
      const UInt64Type v1 = key - v0*gm.numberOfVariables();
      const UInt64Type vis[2]={v0,v1};

      PfType f(gm.numberOfLabels(v0),gm.numberOfLabels(v1),0.0,lambda);
      gm_.addFactor( gm_.addFunction(f) ,vis,vis+2);
   }

   numDualVar_=gm_.numberOfFactors();
   argDual_.resize(numDualVar_);
   dirtyFactors_.resize(numDualVar_);
   lambdas_.resize(numDualVar_);

   // gm_ is set up
   //lambdas_(gm.numberOfFactors()),
   //submodel_ = new SubmodelCGC<PottsGmType>(gm_,3,1,false);
   submodel_ = new SubmodelCGC<PottsGmType>(gm_,0,0,false);

   // set up lambdas 
   for(IndexType f=0;f<numDualVar_;++f){
      
      OPENGM_CHECK(gm_[f].isPotts(), "all factors need to be potts factors");
      OPENGM_CHECK_OP(gm_[f].numberOfVariables(),==,2, "all factors need to 2. order");
      
      const ValueType o = gm_[f].operator()(lAA);
      energyOffset_ += o;
      
      const ValueType lambda=gm_[f].operator()(lAB) - o; 
      if(lambda<0.0){
         bound_ +=lambda;
      }
      lambdas_[f]=lambda;
   }
}




template<class GM, class ACC>
template<class VisitorType>
InferenceTermination CGC<GM,ACC>::infer
(
   VisitorType& visitor
)
{
   timeout_ = false;
   //std::cout << boost::format("CGC: infer for %d primary, %d dual variables\n") % gm_.numberOfVariables() % gm_.numberOfFactors();
   visitor.begin(*this);
   if(param_.startFromThreshold_)
      startFromThreshold(gm_,lambdas_,argPrimal_, 0);
   for(IndexType f=0;f<numDualVar_;++f){
      const IndexType v1=gm_[f].variableIndex(0);
      const IndexType v2=gm_[f].variableIndex(1);
   }

   ValueType valA = 0.0;
   ValueType valB = 0.0;
   for(size_t i=0;i<param_.maxIterations_;++i){
      if(!timeout_ && param_.doCutMove_ && ( value_<valA || i==0)){
         //std::cout<<"rec 2 coloring\n";
         this->recursive2Coloring(visitor);
         valA=value_;
      }
      if(!timeout_ && param_.doGlueCutMove_ && (value_<valB || i==0)){
         //std::cout<<"greedy 2 coloring\n";
         this->greedy2ColoringPlanar(visitor);
         valB=value_;
      }
      if(timeout_)
         break;
   }
   visitor.end(*this);
   return NORMAL;
}



template<class GM, class ACC>
template<class VISITOR>
void 
CGC<GM, ACC>::recursive2Coloring(VISITOR & visitor){
   // set mode
   inRecursive2Coloring_=true;
   inGreedy2Coloring_=false;

   // set starting point will set up all invariants
   const LabelType numCCsStart=this->setStartingPointFromArgPrimal(true);
   


   // while there are subsets to cut in deque
   while(!toSplit_.empty()){

      
      // get an example variable of an cc and 
      // the "color" of all variables which are in cc
      const LabelType exampleVariableInCC = toSplit_.front();
      toSplit_.pop_front();
      const LabelType ccColor = argPrimal_[exampleVariableInCC];

      // infer cc  / all variables which have ccColor 
      // the result of inference is writte in self.argPrimal via call by reference 
      IVPairType res = submodel_->inferSubset(argPrimal_,ccColor,exampleVariableInCC,maxColor_+1,toSplit_,param_.planar_, false /*debug*/);
      const int         numCCArg       = res.first;
      const ValueType value2Coloring   = res.second;

      // the 2 coloring on the cc can split the cc in "numCCArg" connected comps
      // and if numCCArg is 1 this means cc can't be splitted any more
      // otherwise we need to add an exampe var for each result cc to the deque
      if(numCCArg>1){
         // increment the maximum color which is in arg Primal
         maxColor_ += numCCArg+1;
         // update current best value
         value_    += value2Coloring;
         if(visitor(*this)!=0){
            timeout_ = true;
            break;
         }
      }
   }   


   // set mode
   inRecursive2Coloring_=false;
   inGreedy2Coloring_=false;
   // set starting point will set up all invariants
   const LabelType numCCsEnd=this->setStartingPointFromArgPrimal(false);
}


template<class GM, class ACC>
template<class VISITOR>
void 
CGC<GM, ACC>::greedy2ColoringPlanar(VISITOR & visitor){
   // set mode
   inRecursive2Coloring_=false;
   inGreedy2Coloring_=true;



   //while there are some improvements
   bool changes=true;

   //std::vector<bool> dirtyFactors(gm_.numberOfFactors(),true);


   //std::fill(dirtyFactors_.begin(),dirtyFactors_.end(),true );

   for(IndexType fi=0;fi<dirtyFactors_.size();++fi){
      if(dirtyFactors_[fi]!=2)
         dirtyFactors_[fi]=1;
   }


   while(changes && timeout_==false){
      changes=false;

      // set starting point will set up all invariants
      const LabelType numCCsStart=this->setStartingPointFromArgPrimal(false);
      if (numCCsStart==1){
         break;
      }

      // find one factor between each cc 
      typedef opengm::UInt64Type KeyType;
      typedef std::map< opengm::UInt64Type , IndexType > MapType;
      typedef typename MapType::const_iterator MapIter;
      MapType factorCCs;
      for(IndexType fi=0;fi<numDualVar_;++fi){
         const LabelType c0 = argPrimal_[ gm_[fi].variableIndex(0) ];
         const LabelType c1 = argPrimal_[ gm_[fi].variableIndex(1) ];
         const KeyType  cA = static_cast<KeyType>(std::min(c0,c1));
         const KeyType  cB = static_cast<KeyType>(std::max(c0,c1));
         
         const KeyType key  = cA  + cB*static_cast<KeyType>(maxColor_+1);
         factorCCs[key]=fi;
      }

      // get 2 adj. connect comp , merge them and try to
      // reoptimize them with colorings
      for(MapIter iter=factorCCs.begin();iter!=factorCCs.end();++iter){
         const IndexType fi = iter->second;
         if(param_.useBookkeeping_==false ||  dirtyFactors_[fi] == 1 ){

            //std::cout<<" fi dirty ? "<<bool(dirtyFactors[fi])<<" \n";
            const LabelType c0 = argPrimal_[ gm_[fi].variableIndex(0) ];
            const LabelType c1 = argPrimal_[ gm_[fi].variableIndex(1) ];

            // infer by merging and resplitting
            if(c0!=c1){
               //std::cout<<"infer 2 subsets \n\n";
               IVPairType res = submodel_->infer2Subsets(
                  argPrimal_,c0,c1,
                  gm_[fi].variableIndex(0),gm_[fi].variableIndex(1),
                  maxColor_+1,
                  param_.planar_
               );
               const int numCCArg               = res.first;
               const ValueType value2Coloring = res.second;
               /*
               if(numCCArg==-1):
                   print " one var problem"
               
                   print " no improvement"
               elif(numCCArg==-3):
                   print " OPT CUT"
               */
               if(numCCArg==0){
                  //std::cout<<"zeros ccs\n";
                  OPENGM_CHECK(false,"internal error");
               }
               // no improvment 
               else if(numCCArg==-2){
                  //std::cout<<" NO improvement\n\n\n";
                  if(param_.useBookkeeping_)
                     submodel_->updateDirtyness(dirtyFactors_,false);
                    //submodel_->cleanInsideAndBorder();
               }
               else if(numCCArg>=1){
                  //OPENGM_CHECK_OP(value2Coloring,<=,0.0,"internal error");
                  //if(numCCArg==1){
                     //OPENGM_CHECK_OP(argPrimal_[gm_[fi].variableIndex(0)],==,argPrimal_[gm_[fi].variableIndex(1)], "internal error");
                  //}
                  changes=true;
                  maxColor_+=numCCArg+1;
                  value_+=value2Coloring;
                  if(param_.useBookkeeping_){
                     submodel_->updateDirtyness(dirtyFactors_,true);
                     //submodel_->cleanInsideAndBorder();
                  }
                 
                  if(visitor(*this)!=0){
                     timeout_ = true;
                     break;
                  }
               }
               submodel_->cleanInsideAndBorder();
            } // if still active
         } // if dirty
         else{
         }
      } // for all factors
   } // while changes...

   inRecursive2Coloring_=false;
   inGreedy2Coloring_=false;
   // set starting point will set up all invariants
   const LabelType numCCsEnd=this->setStartingPointFromArgPrimal(false);
}
     


template<class GM, class ACC>
inline void
CGC<GM, ACC>::reset(){

}
   
template<class GM, class ACC>
inline void 
CGC<GM,ACC>::setStartingPoint
(
   typename std::vector<typename CGC<GM,ACC>::LabelType>::const_iterator begin
) {
   std::copy(begin,begin+numVar_,argPrimal_.begin());
   const LabelType numCC=this->setStartingPointFromArgPrimal(true);
}

template<class GM, class ACC>
inline typename CGC<GM,ACC>::LabelType 
CGC<GM,ACC>::setStartingPointFromArgPrimal(const bool fillQ){

   // get a connected componet labeling from starting point 
   IndexType numCC = detail_gcg::getCCFromLabels(gm_,argPrimal_.begin());


   //this has set  returns the following:
   //   #  argPrimal_[primal variable index / vi] = "color" in [0, numCC]
   this->primalToDual();
   value_ = evalPrimal();
   maxColor_ = numCC-1;

   if(fillQ){
      // fill deque with example variables for each connected componet
      std::vector<LabelType> toFind(numCC);
      std::vector<bool>      found(numCC,false);
      std::vector<IndexType> foundPosition(numCC);
      for(LabelType c=0;c<numCC;++c){
         toFind[c]=c;
      }
      detail_gcg::findFirst(toFind,argPrimal_,foundPosition,found);
      toSplit_.clear();
      for(IndexType c=0;c<numCC;++c){
         toSplit_.push_back(foundPosition[c]);
      }
   }
   return numCC;
}
   
template<class GM, class ACC>
inline std::string
CGC<GM, ACC>::name() const
{
   return "CGC";
}

template<class GM, class ACC>
inline const typename CGC<GM, ACC>::GraphicalModelType&
CGC<GM, ACC>::graphicalModel() const
{
   return gmRaw_;
}
  
template<class GM, class ACC>
inline InferenceTermination
CGC<GM,ACC>::infer()
{
   EmptyVisitorType v;
   return infer(v);
}

  


template<class GM, class ACC>
inline InferenceTermination
CGC<GM,ACC>::arg
(
      std::vector<LabelType>& x,
      const size_t N
) const
{
   if(N==1) {
      x.resize(gm_.numberOfVariables());
      for(size_t j=0; j<x.size(); ++j) {
         x[j] = argPrimal_[j];
      }
      return NORMAL;
   }
   else {
      return UNKNOWN;
   }
}


template<class GM, class ACC>
inline void
CGC<GM, ACC>::primalToDual(){
   for(IndexType f=0;f<numDualVar_;++f){
      const IndexType v1=gm_[f].variableIndex(0);
      const IndexType v2=gm_[f].variableIndex(1);
      argDual_[f] = argPrimal_[v1]==argPrimal_[v2] ? 0 :1 ;
   }
}


template<class GM, class ACC>
inline typename CGC<GM, ACC>::ValueType
CGC<GM, ACC>::evalPrimal2(
   const std::vector<typename CGC<GM, ACC>::LabelType> & argP
)const{
   ValueType value = 0.0;
   for(IndexType f=0;f<numDualVar_;++f){
      const IndexType v1=gm_[f].variableIndex(0);
      const IndexType v2=gm_[f].variableIndex(1);
      if(argP[v1]!=argP[v2])
         value+=lambdas_[f];
   }
   return value;
}


template<class GM, class ACC>
inline typename CGC<GM, ACC>::ValueType
CGC<GM, ACC>::evalPrimal()const{
   ValueType value = 0.0;
   for(IndexType f=0;f<numDualVar_;++f){
      const IndexType v1=gm_[f].variableIndex(0);
      const IndexType v2=gm_[f].variableIndex(1);
      if(argPrimal_[v1]!=argPrimal_[v2])
         value+=lambdas_[f];
   }
   return value;
}


template<class GM, class ACC>
inline typename CGC<GM, ACC>::ValueType
CGC<GM, ACC>::evalDual()const{
   ValueType value = 0.0;
   for(IndexType f=0;f<numDualVar_;++f){
      if(argDual_[f]!=0)
         value+=lambdas_[f];
   }
   return value;
}



} // namespace opengm

#endif // #ifndef OPENGM_CGC_HXX

// kate: space-indent on; indent-width 3; replace-tabs on; indent-mode cstyle; remove-trailing-space; replace-trailing-spaces-save;