This file is indexed.

/usr/include/opengm/inference/greedygremlin.hxx is in libopengm-dev 2.3.6+20160905-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#pragma once
#ifndef OPENGM_GREEDYGREMLIN_HXX
#define OPENGM_GREEDYGREMLIN_HXX

#include <cmath>
#include <vector>
#include <list>
#include <set>
#include <iostream>
#include <algorithm>
#include <iostream>
#include <functional>

#include "opengm/opengm.hxx"
#include "opengm/graphicalmodel/graphicalmodel.hxx"
#include "opengm/inference/inference.hxx"
#include "opengm/inference/visitors/visitors.hxx"
namespace opengm {



/// \endcond 

   /// \brief GREEDY GREMLIN
   ///
   /// The greedy gremlin is a simple greedy algorithm for inference on graphical models.
   /// It itteratively fix a variable that is the best given all so far fixed variables,
   /// by ingoring all factors that include variables that are not fixed so far (exclude the current variable)
   ///
   /// The greedy gremlin defines a baseline for other algorithms.
   ///
   /// \ingroup inference
   template<class GM,class ACC>
   class GreedyGremlin : public Inference<GM,ACC>
   {
   public:
      ///graphical model type
      typedef GM                                          GraphicalModelType;
      ///accumulation type
      typedef ACC                                         AccumulationType;
      OPENGM_GM_TYPE_TYPEDEFS;
      /// visitor 
      typedef visitors::VerboseVisitor<GreedyGremlin<GM, ACC> > VerboseVisitorType;
      typedef visitors::EmptyVisitor<GreedyGremlin<GM, ACC> >   EmptyVisitorType;
      typedef visitors::TimingVisitor<GreedyGremlin<GM, ACC> >  TimingVisitorType;
      
        template<class _GM>
        struct RebindGm{
            typedef GreedyGremlin<_GM, ACC> type;
        };

        template<class _GM,class _ACC>
        struct RebindGmAndAcc{
            typedef GreedyGremlin<_GM, _ACC > type;
        };


      struct Parameter {
            Parameter(){

            }
            template<class P>
            Parameter(const P & p){
                
            }
      };
      GreedyGremlin(const GM& gm, Parameter para = Parameter());
      virtual std::string name() const {return "GreedyGremlin";}
      const GraphicalModelType& graphicalModel() const;
      virtual InferenceTermination infer();
      virtual void reset();
      template<class VisitorType> InferenceTermination infer(VisitorType& vistitor);
      virtual InferenceTermination marginal(const size_t,IndependentFactorType& out)const        {return UNKNOWN;}
      virtual InferenceTermination factorMarginal(const size_t, IndependentFactorType& out)const {return UNKNOWN;}
      virtual InferenceTermination arg(std::vector<LabelType>& v, const size_t = 1)const;
      virtual InferenceTermination args(std::vector< std::vector<LabelType> >& v)const;

   private:
      const GM&                                   gm_;
      Parameter                                   parameter_;
      std::vector<LabelType>                      conf_;
   };


//*******************
//** Impelentation **
//*******************

/// \brief constructor
/// \param gm graphical model
/// \param para GreedyGremlin parameter
   template<class GM, class ACC >
   GreedyGremlin<GM,ACC>::GreedyGremlin
   (
      const GM& gm,
      Parameter para
      ):gm_(gm), parameter_(para)
   {
      conf_.resize(gm.numberOfVariables(),0);
   }
  
   /// \brief reset
   ///
   /// \warning  reset assumes that the structure of
   /// the graphical model has not changed
   ///
   /// TODO
   template<class GM, class ACC >
   void
   GreedyGremlin<GM,ACC>::reset()
   {
      ///todo
   }

   template <class GM, class ACC>
   InferenceTermination
   GreedyGremlin<GM,ACC>::infer()
   { 
      EmptyVisitorType v;
      return infer(v);
   }

/// \brief inference with visitor
/// \param visitor visitor
   template<class GM, class ACC>
   template<class VisitorType>
   InferenceTermination GreedyGremlin<GM,ACC>::infer(VisitorType& visitor)
   {
      std::vector<bool>       nodeColor(gm_.numberOfVariables(),false);
      std::vector<IndexType>  waitingList(gm_.numberOfVariables());
      waitingList[0] = 0;
      nodeColor[0]   = true;
      IndexType waitingListFirst = 0;
      IndexType waitingListLast  = 0;
      visitor.begin(*this);    
      const ValueType neutral = GM::OperatorType::template neutral<ValueType>();
      while(waitingListFirst<waitingList.size()){
         OPENGM_ASSERT(waitingListFirst<=waitingListLast);
         IndexType var = waitingList[waitingListFirst++];
         std::vector<ValueType> vals(gm_.numberOfLabels(var),neutral);
         //for all neigboured factors
         for(typename GM::ConstFactorIterator fit=gm_.factorsOfVariableBegin(var); fit!=gm_.factorsOfVariableEnd(var); ++fit){
            bool useIt = true;
            for(typename GM::ConstVariableIterator vit=gm_.variablesOfFactorBegin(*fit); vit!=gm_.variablesOfFactorEnd(*fit); ++vit){
               if(nodeColor[*vit]==false){
                  useIt = false;
                  break;
               }
            }
            if(useIt){
               std::vector<LabelType> l(gm_[*fit].numberOfVariables());
               size_t p;
               for(size_t i=0; i<l.size();++i){
                  if(gm_[*fit].variableIndex(i)==var)
                     p=i;
                  else
                     l[i] = conf_[gm_[*fit].variableIndex(i)];
               }
               for(l[p]=0; l[p]<gm_.numberOfLabels(var);++l[p]){
                  const ValueType v = gm_[*fit](l.begin());
                  GM::OperatorType::op(v,vals[l[p]]);
               }
            } 
         }

         //find best and fix
         for(size_t i=0; i<vals.size();++i){
            if(ACC::bop(vals[i],vals[conf_[var]]))
               conf_[var]=i;                    
         }

         //add white neighbours to waitingslist
         for(typename GM::ConstFactorIterator fit=gm_.factorsOfVariableBegin(var); fit!=gm_.factorsOfVariableEnd(var); ++fit){
            for(typename GM::ConstVariableIterator vit=gm_.variablesOfFactorBegin(*fit); vit!=gm_.variablesOfFactorEnd(*fit); ++vit){
               if(nodeColor[*vit]==false){
                  nodeColor[*vit]=true;
                  waitingList[++waitingListLast] = *vit;
               }
            }
         }
         if( visitor(*this) != visitors::VisitorReturnFlag::ContinueInf ){
            break;
         }
      }
           
      visitor.end(*this);     
      return NORMAL;
   }

   template<class GM, class ACC>
   InferenceTermination GreedyGremlin<GM, ACC>
   ::arg(std::vector<LabelType>& conf, const size_t n)const
   {
      if(n==1) {
         conf=conf_;
         return NORMAL;
      }else{
         conf.resize(0);
         return UNKNOWN;
      }
   }

/// \brief args
/// \param[out]conf state vectors
///
///get the inference solutions
   template<class GM, class ACC>
   InferenceTermination GreedyGremlin<GM,ACC>
   ::args(std::vector<std::vector<typename GreedyGremlin<GM,ACC>::LabelType> >& conf)const
   { 
      return UNKNOWN;
   }


   template<class GM, class ACC>
   inline const typename GreedyGremlin<GM, ACC>::GraphicalModelType&
   GreedyGremlin<GM, ACC>::graphicalModel() const
   {
      return gm_;
   }


} // namespace opengm

#endif // #ifndef OPENGM_GREEDYGREMLIN_HXX