This file is indexed.

/usr/include/opengm/inference/qpbo.hxx is in libopengm-dev 2.3.6+20160905-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#pragma once
#ifndef OPENGM_QPBO_HXX
#define OPENGM_QPBO_HXX

#include "opengm/graphicalmodel/graphicalmodel_factor.hxx"
#include "opengm/graphicalmodel/graphicalmodel.hxx"
#include "opengm/operations/adder.hxx"
#include "opengm/operations/minimizer.hxx"
#include "opengm/inference/inference.hxx"
#include "opengm/inference/visitors/visitors.hxx"

namespace opengm {
   
/// QPBO Algorithm\n\n
/// C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer, "Optimizing binary MRFs via extended roof duality", CVPR 2007
///
/// \ingroup inference 
template<class GM, class MIN_ST_CUT>
class QPBO : public Inference<GM, opengm::Minimizer>
{
public:
   typedef GM GraphicalModelType;
   typedef opengm::Minimizer AccumulationType;
   OPENGM_GM_TYPE_TYPEDEFS;
   typedef visitors::VerboseVisitor<QPBO<GM,MIN_ST_CUT> > VerboseVisitorType;
   typedef visitors::TimingVisitor<QPBO<GM,MIN_ST_CUT> > TimingVisitorType;
   typedef visitors::EmptyVisitor<QPBO<GM,MIN_ST_CUT> > EmptyVisitorType;

    template<class _GM>
    struct RebindGm{
        typedef QPBO<_GM, MIN_ST_CUT> type;
    };

    template<class _GM,class _ACC>
    struct RebindGmAndAcc{
        typedef QPBO<_GM ,MIN_ST_CUT> type;
    };


   struct Parameter{
     Parameter ( ) {};
     template<class P>
     Parameter (const P & p) {};
   };

   QPBO(const GraphicalModelType&, Parameter = Parameter());
   std::string name() const;
   const GraphicalModelType& graphicalModel() const;
   InferenceTermination infer();
   template<class VISITOR>
      InferenceTermination infer(VISITOR &);
   InferenceTermination arg(std::vector<LabelType>&, const size_t& = 1) const;
   double partialOptimality(std::vector<bool>&) const;

private:
   void addUnaryFactorType(const FactorType& factor);
   void addUnaryFactorType(size_t var, ValueType value0, ValueType value1);
   void addEdgeCapacity(size_t v,size_t w, ValueType val);
   void addPairwiseFactorType(const FactorType& factor);
   void addPairwiseFactorType(size_t var0,size_t var1,ValueType A,ValueType B,ValueType C,ValueType D);

   // get the index of the opposite literal in the graph_
   size_t neg(size_t var) const { return (var+numVars_)%(2*numVars_); }

   const GraphicalModelType& gm_;
   //std::vector<LabelType> state_;
   std::vector<bool> stateBool_;
   size_t numVars_;
   ValueType constTerm_;
   MIN_ST_CUT minStCut_;
   ValueType tolerance_;
   size_t source_;
   size_t sink_;
};

template<class GM,class MIN_ST_CUT>
QPBO<GM,MIN_ST_CUT>::QPBO
(
   const GM & gm,
   typename QPBO<GM,MIN_ST_CUT>::Parameter
)
:  gm_(gm),
   numVars_(gm_.numberOfVariables()),
   minStCut_(2*gm_.numberOfVariables()+2, 6*gm_.numberOfVariables()) /// now many edges?
{
   constTerm_ = 0;
   source_ = 2*numVars_;
   sink_   = 2*numVars_ + 1;

   // add pairwise factors
   for(size_t j=0; j<gm_.numberOfFactors(); ++j) {
      switch (gm_[j].numberOfVariables()) {
      case 0:
      {
         size_t c[]={0};
         constTerm_ += gm_[j](c);
      }
      break;
      case 1:
         addUnaryFactorType(gm_[j]);
         break;
      case 2:
         addPairwiseFactorType(gm_[j]);
         break;
      default: throw std::runtime_error("This implementation of the QPBO optimizer does not support factors of order >2.");
      }
   }
}

template<class GM,class MIN_ST_CUT>
inline std::string
QPBO<GM,MIN_ST_CUT>::name() const
{
   return "QPBO";
}

template<class GM,class MIN_ST_CUT>
inline const typename QPBO<GM,MIN_ST_CUT>::GraphicalModelType&
QPBO<GM,MIN_ST_CUT>::graphicalModel() const
{
   return gm_;
}

template<class GM,class MIN_ST_CUT>
inline InferenceTermination
QPBO<GM,MIN_ST_CUT>::infer() {
   EmptyVisitorType v;
   return infer(v);
}

template<class GM,class MIN_ST_CUT>
template<class VISITOR>
inline InferenceTermination
QPBO<GM,MIN_ST_CUT>::infer(VISITOR & visitor) 
{
   visitor.begin(*this);
   minStCut_.calculateCut(stateBool_); 
   visitor.end(*this);
   return NORMAL;
}

template<class GM,class MIN_ST_CUT>
inline InferenceTermination
QPBO<GM,MIN_ST_CUT>::arg
(
   std::vector<LabelType>& arg,
   const size_t& n
   ) const
{
   if(n > 1) {
      return UNKNOWN;
   }
   else {
      arg.resize(numVars_);
      for(size_t j=0; j<arg.size(); ++j) {
         if (stateBool_[j+2] == true && stateBool_[neg(j)+2] == false)
            arg[j] = 1;
         else if (stateBool_[j+2] == false && stateBool_[neg(j)+2] == true)
            arg[j] = 0;
         else
            arg[j] = 0; // select 0 or 1
      }
      return NORMAL;
   }
}

template<class GM,class MIN_ST_CUT>
double
QPBO<GM,MIN_ST_CUT>::partialOptimality
(
   std::vector<bool>& optVec
   ) const
{
   double opt = 0;
   optVec.resize(numVars_);
   for(size_t j=0; j<optVec.size(); ++j)
      if (stateBool_[j+2] != stateBool_[neg(j)+2]) {
         optVec[j] = true;
         opt++;
      } else
         optVec[j] = false;

   return opt/gm_.numerOfVariables();
}

template<class GM,class MIN_ST_CUT>
void inline
QPBO<GM,MIN_ST_CUT>::addEdgeCapacity(size_t v, size_t w, ValueType val)
{
   minStCut_.addEdge((v+2)%(2*numVars_+2),(w+2)%(2*numVars_+2),val);
}

template<class GM,class MIN_ST_CUT>
void
QPBO<GM,MIN_ST_CUT>::addUnaryFactorType(const FactorType& factor)
{
   // indices of literal nodes in graph_
   size_t x_i  = factor.variableIndex(0);
   size_t nx_i = neg(x_i);

   // conversion to normal form on-the-fly: c_[n]x_i are the new
   // values of the unary factor.
   size_t c[]={0};
   ValueType c_nx_i = factor(c);
   c[0]=1;
   ValueType c_x_i  = factor(c);

   // has to be zero
   ValueType delta = std::min(c_nx_i, c_x_i);
   c_nx_i     -= delta;
   c_x_i      -= delta;
   constTerm_ += delta;

   addEdgeCapacity(x_i,    sink_, 0.5*c_nx_i);
   addEdgeCapacity(source_, nx_i, 0.5*c_nx_i);

   addEdgeCapacity(nx_i,   sink_, 0.5*c_x_i);
   addEdgeCapacity(source_,  x_i, 0.5*c_x_i);
}

template<class GM,class MIN_ST_CUT>
void
QPBO<GM,MIN_ST_CUT>::addPairwiseFactorType
(
   const FactorType& factor
) {
   // indices of literal nodes in graph_
   size_t x_i  = factor.variableIndex(0);
   size_t x_j  = factor.variableIndex(1);
   size_t nx_i = neg(x_i);
   size_t nx_j = neg(x_j);

   // conversion to normal form on-the-fly: c_[n]x_i_[n]x_j are the new
   // values of the pairwise factors. delta_c_[n]x_{i,j} are changes that have
   // to be made to the unary factors.

   size_t c[]={0,0};
   ValueType c_nx_i_nx_j = factor(c);
   c[1]=1;
   ValueType c_nx_i_x_j  = factor(c);
   c[0]=1;
   c[1]=0;
   ValueType c_x_i_nx_j  = factor(c);
   c[1]=1;
   ValueType c_x_i_x_j   = factor(c);

   ValueType delta_c_nx_j = 0;
   ValueType delta_c_x_j  = 0;
   ValueType delta_c_nx_i = 0;
   ValueType delta_c_x_i  = 0;

   // hast to be zero
   ValueType delta = std::min(c_nx_i_nx_j, c_x_i_nx_j);
   if (delta != 0) {

      c_nx_i_nx_j  -= delta;
      c_x_i_nx_j   -= delta;
      delta_c_nx_j += delta;
   }

   // has to be zero
   delta = std::min(c_nx_i_x_j, c_x_i_x_j);
   if (delta != 0) {

      c_nx_i_x_j  -= delta;
      c_x_i_x_j   -= delta;
      delta_c_x_j += delta;
   }

   // has to be zero
   delta = std::min(c_nx_i_nx_j, c_nx_i_x_j);
   if (delta != 0) {

      c_nx_i_nx_j  -= delta;
      c_nx_i_x_j   -= delta;
      delta_c_nx_i += delta;
   }

   // has to be zero
   delta = std::min(c_x_i_nx_j, c_x_i_x_j);
   if (delta != 0) {

      c_x_i_nx_j  -= delta;
      c_x_i_x_j   -= delta;
      delta_c_x_i += delta;
   }

   // for every non-zero c_[n]x_i_[n]x_j add two edges to the flow network

   if (c_nx_i_nx_j != 0) {
      addEdgeCapacity(x_i,  nx_j, 0.5*c_nx_i_nx_j);
      addEdgeCapacity(x_j,  nx_i, 0.5*c_nx_i_nx_j);
   }
   if (c_nx_i_x_j != 0) {
      addEdgeCapacity(x_i,   x_j, 0.5*c_nx_i_x_j);
      addEdgeCapacity(nx_j, nx_i, 0.5*c_nx_i_x_j);
   }
   if (c_x_i_nx_j != 0) {
      addEdgeCapacity(nx_i, nx_j, 0.5*c_x_i_nx_j);
      addEdgeCapacity(x_j,   x_i, 0.5*c_x_i_nx_j);
   }
   if (c_x_i_x_j != 0) {
      addEdgeCapacity(nx_i,  x_j, 0.5*c_x_i_x_j);
      addEdgeCapacity(nx_j,  x_i, 0.5*c_x_i_x_j);
   }

   // for every non-zero c_[n]x_{i,j} add two edges to the flow network

   if (delta_c_nx_j != 0) {
      addEdgeCapacity(x_j,    sink_, 0.5*delta_c_nx_j);
      addEdgeCapacity(source_, nx_j, 0.5*delta_c_nx_j);
   }
   if (delta_c_x_j != 0) {
      addEdgeCapacity(nx_j,   sink_, 0.5*delta_c_x_j);
      addEdgeCapacity(source_,  x_j, 0.5*delta_c_x_j);
   }
   if (delta_c_nx_i != 0) {
      addEdgeCapacity(x_i,    sink_, 0.5*delta_c_nx_i);
      addEdgeCapacity(source_, nx_i, 0.5*delta_c_nx_i);
   }
   if (delta_c_x_i != 0) {
      addEdgeCapacity(nx_i,   sink_, 0.5*delta_c_x_i);
      addEdgeCapacity(source_,  x_i, 0.5*delta_c_x_i);
   }
}

} // namespace opengm

#endif // #ifndef OPENGM_EXTERNAL_QPBO_HXX