This file is indexed.

/usr/include/opengm/inference/swendsenwang.hxx is in libopengm-dev 2.3.6+20160905-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
#pragma once
#ifndef OPENGM_SWENDSENWANG_HXX
#define OPENGM_SWENDSENWANG_HXX

#include <vector>
#include <set>
#include <stack>
#include <cmath>
#include <algorithm>
#include <iostream>

#include "opengm/opengm.hxx"
#include "opengm/operations/adder.hxx"
#include "opengm/operations/multiplier.hxx"
#include "opengm/operations/minimizer.hxx"
#include "opengm/operations/maximizer.hxx"
#include "opengm/utilities/random.hxx"
#include "opengm/utilities/indexing.hxx"
#include "opengm/datastructures/randomaccessset.hxx"
#include "opengm/datastructures/partition.hxx"
#include "opengm/inference/movemaker.hxx"
#include "opengm/inference/visitors/visitor.hxx"
#include "opengm/functions/view_convert_function.hxx"

namespace opengm {

/// \cond suppress doxygen
namespace detail_swendsenwang {
   template<class OPERATOR, class ACCUMULATOR, class PROBABILITY>
   struct ValueToProbability;

   template<class PROBABILITY>
   struct ValueToProbability<Multiplier, Maximizer, PROBABILITY>
   {
      typedef PROBABILITY ProbabilityType;
      template<class T>
         static ProbabilityType convert(const T x)
            { return static_cast<ProbabilityType>(x); }
   };

   template<class PROBABILITY>
   struct ValueToProbability<Adder, Minimizer, PROBABILITY>
   {
      typedef PROBABILITY ProbabilityType;
      template<class T>
         static ProbabilityType convert(const T x)
            { return static_cast<ProbabilityType>(std::exp(-x)); }
   };
}
/// \endcond no longer suppress doxygen

/// \brief Visitor
template<class SW>
class SwendsenWangEmptyVisitor {
public:
   typedef SW SwendsenWangType;

   void operator()(const SwendsenWangType&, const size_t, const size_t,
      const bool, const bool) const;
};

/// \brief Visitor
template<class SW>
class SwendsenWangVerboseVisitor
 {
public:
   typedef SW SwendsenWangType;

   void operator()(const SwendsenWangType&, const size_t, const size_t,
      const bool, const bool) const;
};

/// \brief Visitor
template<class SW>
class SwendsenWangMarginalVisitor {
public:
   typedef SW SwendsenWangType;
   typedef typename SwendsenWangType::ValueType ValueType;
   typedef typename SwendsenWangType::GraphicalModelType GraphicalModelType;
   typedef typename GraphicalModelType::IndependentFactorType IndependentFactorType;

   // construction
   SwendsenWangMarginalVisitor();
   SwendsenWangMarginalVisitor(const GraphicalModelType&);
   void assign(const GraphicalModelType&);

   // manipulation
   template<class VariableIndexIterator>
      size_t addMarginal(VariableIndexIterator, VariableIndexIterator);
   size_t addMarginal(const size_t);
   void operator()(const SwendsenWangType&, const size_t, const size_t,
      const bool, const bool);

   // query
   size_t numberOfSamples() const;
   size_t numberOfAcceptedSamples() const;
   size_t numberOfRejectedSamples() const;
   size_t numberOfMarginals() const;
   const IndependentFactorType& marginal(const size_t) const;

private:
   const GraphicalModelType* gm_;
   size_t numberOfSamples_;
   size_t numberOfAcceptedSamples_;
   size_t numberOfRejectedSamples_;
   std::vector<IndependentFactorType> marginals_;
   std::vector<typename GraphicalModelType::LabelType> stateCache_;
};

/// \brief Generalized Swendsen-Wang sampling\n\n
/// A. Barbu, S. Zhu, "Generalizing swendsen-wang to sampling arbitrary posterior probabilities", PAMI 27:1239-1253, 2005
/// 
/// \ingroup inference 
template<class GM, class ACC>
class SwendsenWang 
: public Inference<GM, ACC> {
public:
   typedef GM GraphicalModelType;
   typedef ACC AccumulationType;
   OPENGM_GM_TYPE_TYPEDEFS;
   typedef double ProbabilityType;
   typedef SwendsenWangEmptyVisitor<SwendsenWang<GM, ACC> > EmptyVisitorType;
   typedef SwendsenWangVerboseVisitor<SwendsenWang<GM, ACC> > VerboseVisitorType;
   typedef TimingVisitor<SwendsenWang<GM, ACC> > TimingVisitorType;

   struct Parameter
   {
      Parameter
      (
         const size_t maxNumberOfSamplingSteps = 1e5,
         const size_t numberOfBurnInSteps = 1e5,
         ProbabilityType lowestAllowedProbability = 1e-6,
         const std::vector<LabelType>& initialState = std::vector<LabelType>()
      )
      :  maxNumberOfSamplingSteps_(maxNumberOfSamplingSteps),
         numberOfBurnInSteps_(numberOfBurnInSteps),
         lowestAllowedProbability_(lowestAllowedProbability),
         initialState_(initialState)
      {}

      size_t maxNumberOfSamplingSteps_;
      size_t numberOfBurnInSteps_;
      ProbabilityType lowestAllowedProbability_;
      std::vector<LabelType> initialState_;
   };

   SwendsenWang(const GraphicalModelType&, const Parameter& param = Parameter());
   virtual std::string name() const;
   virtual const GraphicalModelType& graphicalModel() const;
   virtual void reset();
   virtual InferenceTermination infer();
   template<class VISITOR>
      InferenceTermination infer(VISITOR&);
   virtual InferenceTermination arg(std::vector<LabelType>&, const size_t = 1) const;

   LabelType markovState(const size_t) const;
   ValueType markovValue() const;
   LabelType currentBestState(const size_t) const;
   ValueType currentBestValue() const;

private:
   void computeEdgeProbabilities();
   void cluster(Partition<size_t>&) const;
   template<bool BURNED_IN, class VARIABLE_ITERATOR, class STATE_ITERATOR>
      bool move(VARIABLE_ITERATOR, VARIABLE_ITERATOR, STATE_ITERATOR);

   Parameter parameter_;
   const GraphicalModelType& gm_;
   Movemaker<GraphicalModelType> movemaker_;
   std::vector<RandomAccessSet<size_t> > variableAdjacency_;
   std::vector<std::vector<ProbabilityType> > edgeProbabilities_;
   std::vector<LabelType> currentBestState_;
   ValueType currentBestValue_;
};

template<class GM, class ACC>
inline
SwendsenWang<GM, ACC>::SwendsenWang
(
   const typename SwendsenWang<GM, ACC>::GraphicalModelType& gm,
   const typename SwendsenWang<GM, ACC>::Parameter& param
)
:  parameter_(param),
   gm_(gm),
   movemaker_(param.initialState_.size() == gm.numberOfVariables() ? Movemaker<GM>(gm, param.initialState_.begin()) : Movemaker<GM>(gm)),
   variableAdjacency_(gm.numberOfVariables()),
   edgeProbabilities_(gm.numberOfVariables()),
   currentBestState_(gm.numberOfVariables()),
   currentBestValue_(movemaker_.value())
{
   if(parameter_.initialState_.size() != 0 && parameter_.initialState_.size() != gm.numberOfVariables()) {
      throw RuntimeError("The size of the initial state does not match the number of variables.");
   }
   gm.variableAdjacencyList(variableAdjacency_);
   for(size_t j=0; j<gm_.numberOfVariables(); ++j) {
      edgeProbabilities_[j].resize(variableAdjacency_[j].size());
   }
   computeEdgeProbabilities();
}

template<class GM, class ACC>
inline void
SwendsenWang<GM, ACC>::reset()
{
   if(parameter_.initialState_.size() == gm_.numberOfVariables()) {
      movemaker_.initialize(parameter_.initialState_.begin());
      currentBestState_.assign(parameter_.initialState_.begin(),parameter_.initialState_.end());
   }
   else if(parameter_.initialState_.size() != 0) {
      throw RuntimeError("The size of the initial state does not match the number of variables.");
   }
   else{
      movemaker_.reset();
      std::fill(currentBestState_.begin(),currentBestState_.end(),0);
   }
   currentBestValue_ = movemaker_.value();
   computeEdgeProbabilities();
}

template<class GM, class ACC>
inline std::string
SwendsenWang<GM, ACC>::name() const
{
   return "SwendsenWang";
}

template<class GM, class ACC>
inline const typename SwendsenWang<GM, ACC>::GraphicalModelType&
SwendsenWang<GM, ACC>::graphicalModel() const
{
   return gm_;
}

template<class GM, class ACC>
template<class VISITOR>
InferenceTermination
SwendsenWang<GM, ACC>::infer
(
   VISITOR& visitor
)
{
   Partition<size_t> partition(gm_.numberOfVariables());
   std::vector<size_t> representatives(gm_.numberOfVariables());
   std::vector<bool> visited(gm_.numberOfVariables());
   std::stack<size_t> stack;
   std::vector<size_t> variablesInCluster;
   std::vector<size_t> variablesAroundCluster;
   for(size_t j=0; j<parameter_.numberOfBurnInSteps_ + parameter_.maxNumberOfSamplingSteps_; ++j) {
      // cluster the variable adjacency graph by randomly removing edges
      cluster(partition);

      // draw one cluster at random
      partition.representatives(representatives.begin());
      RandomUniform<size_t> randomNumberGeneratorCluster(0, partition.numberOfSets());
      const size_t representative = representatives[randomNumberGeneratorCluster()];
      // collect all variables in and around the drawn cluster
      variablesInCluster.clear();
      variablesAroundCluster.clear();
      visited[representative] = true;
      stack.push(representative);
      while(!stack.empty()) {
         const size_t variable = stack.top();
         stack.pop();
         variablesInCluster.push_back(variable);
         for(size_t k=0; k<variableAdjacency_[variable].size(); ++k) {
            const size_t adjacentVariable = variableAdjacency_[variable][k];
            if(!visited[adjacentVariable]) {
               visited[adjacentVariable] = true;
               if(partition.find(adjacentVariable) == representative) { // if in cluster
                  stack.push(adjacentVariable);
               }
               else {
                  variablesAroundCluster.push_back(adjacentVariable);
               }
            }
         }
      }

      // clean vector visited
      for(size_t k=0; k<variablesInCluster.size(); ++k) {
         visited[variablesInCluster[k]] = false;
      }
      for(size_t k=0; k<variablesAroundCluster.size(); ++k) {
         visited[variablesAroundCluster[k]] = false;
      }

      // assertion testing
      if(!NO_DEBUG) {
         for(size_t k=0; k<visited.size(); ++k) {
            OPENGM_ASSERT(!visited[k]);
         }
         for(size_t k=0; k<variablesInCluster.size(); ++k) {
            OPENGM_ASSERT(gm_.numberOfLabels(variablesInCluster[k]) == gm_.numberOfLabels(representative));
         }
      }

      // draw a new label at random
      RandomUniform<size_t> randomNumberGeneratorState(0, gm_.numberOfLabels(representative));
      size_t targetLabel = randomNumberGeneratorState();
      std::vector<size_t> targetLabels(variablesInCluster.size(), targetLabel); // TODO add simpler function to movemaker

      if(j < parameter_.numberOfBurnInSteps_) {
         move<false>(variablesInCluster.begin(), variablesInCluster.end(), targetLabels.begin());
         visitor(*this, j, variablesInCluster.size(), true, true);
         continue;
      }

      // evaluate probability density function
      const ProbabilityType currentPDF =
         detail_swendsenwang::ValueToProbability<OperatorType, AccumulationType, ProbabilityType>::convert
            (movemaker_.value());
      const ProbabilityType targetPDF =
         detail_swendsenwang::ValueToProbability<OperatorType, AccumulationType, ProbabilityType>::convert
            (movemaker_.valueAfterMove(variablesInCluster.begin(), variablesInCluster.end(), targetLabels.begin()));

      // evaluate proposal density
      ProbabilityType currentValueProposal = 1;
      ProbabilityType targetValueProposal = 1;
      for(std::vector<size_t>::const_iterator vi = variablesAroundCluster.begin(); vi != variablesAroundCluster.end(); ++vi) {
         if(movemaker_.state(*vi) == movemaker_.state(representative)) { // *vi has old label
            for(size_t k=0; k<variableAdjacency_[*vi].size(); ++k) {
               const size_t nvi = variableAdjacency_[*vi][k];
               if(partition.find(nvi) == representative) { // if *nvi is in cluster
                  currentValueProposal *= (1.0 - edgeProbabilities_[*vi][k]);
               }
            }
         }
         else if(movemaker_.state(*vi) == targetLabel) { // *vi has new label
            for(size_t k=0; k<variableAdjacency_[*vi].size(); ++k) {
               const size_t nvi = variableAdjacency_[*vi][k];
               if(partition.find(nvi) == representative) { // if *nvi is in cluster
                  targetValueProposal *= (1.0 - edgeProbabilities_[*vi][k]);
               }
            }
         }
      }

      // accept or reject re-labeling
      const ProbabilityType metropolisHastingsProbability = (targetValueProposal / currentValueProposal) * (targetPDF / currentPDF);
      OPENGM_ASSERT(metropolisHastingsProbability > 0);
      if(metropolisHastingsProbability >= 1) { // accept
         move<true>(variablesInCluster.begin(), variablesInCluster.end(), targetLabels.begin());
         visitor(*this, j, variablesInCluster.size(), true, false);
      }
      else {
         RandomUniform<ProbabilityType> randomNumberGeneratorAcceptance(0, 1);
         if(metropolisHastingsProbability >= randomNumberGeneratorAcceptance()) { // accept
            move<true>(variablesInCluster.begin(), variablesInCluster.end(), targetLabels.begin());
            visitor(*this, j, variablesInCluster.size(), true, false);
         }
         else { // reject
            visitor(*this, j, variablesInCluster.size(), false, false);
         }
      }
   }

   return NORMAL;
}

template<class GM, class ACC>
inline InferenceTermination
SwendsenWang<GM, ACC>::infer()
{
   EmptyVisitorType visitor;
   return infer(visitor);
}

template<class GM, class ACC>
inline InferenceTermination
SwendsenWang<GM, ACC>::arg
(
   std::vector<LabelType>& x,
   const size_t N
) const {
   if(N == 1) {
      x = currentBestState_;
      return NORMAL;
   }
   else {
      return UNKNOWN;
   }
}

template<class GM, class ACC>
inline typename SwendsenWang<GM, ACC>::LabelType
SwendsenWang<GM, ACC>::markovState
(
   const size_t j
) const
{
   OPENGM_ASSERT(j < gm_.numberOfVariables());
   return movemaker_.state(j);
}

template<class GM, class ACC>
inline typename SwendsenWang<GM, ACC>::ValueType
SwendsenWang<GM, ACC>::markovValue() const
{
   return movemaker_.value();
}

template<class GM, class ACC>
inline typename SwendsenWang<GM, ACC>::LabelType
SwendsenWang<GM, ACC>::currentBestState
(
   const size_t j
) const
{
   OPENGM_ASSERT(j < gm_.numberOfVariables());
   return currentBestState_[j];
}

template<class GM, class ACC>
inline typename SwendsenWang<GM, ACC>::ValueType
SwendsenWang<GM, ACC>::currentBestValue() const
{
   return currentBestValue_;
}

template<class GM, class ACC>
template<bool BURNED_IN, class VARIABLE_ITERATOR, class STATE_ITERATOR>
inline bool SwendsenWang<GM, ACC>::move
(
   VARIABLE_ITERATOR begin,
   VARIABLE_ITERATOR end,
   STATE_ITERATOR it
)
{
   movemaker_.move(begin, end, it);
   if(BURNED_IN) {
      if(ACC::bop(movemaker_.value(), currentBestValue_)) {
         currentBestValue_ = movemaker_.value();
         std::copy(movemaker_.stateBegin(), movemaker_.stateEnd(), currentBestState_.begin());
         return true;
      }
   }
   return false;
}

template<class GM, class ACC>
void
SwendsenWang<GM, ACC>::computeEdgeProbabilities()
{
   std::set<size_t> factors;
   std::set<size_t> connectedVariables;
   size_t variables[] = {0, 0};
   for(variables[0] = 0; variables[0] < gm_.numberOfVariables(); ++variables[0]) {
      for(size_t j = 0; j < variableAdjacency_[variables[0]].size(); ++j) {
         variables[1] = variableAdjacency_[variables[0]][j];
         if(gm_.numberOfLabels(variables[0]) == gm_.numberOfLabels(variables[1])) {
            // for all pairs of connected variables, variables[0] and variables[1],
            // that have the same number of states, identify
            // - all factors connected to variables[0] or variables[1] (or both)
            // - all variables connected to these factors
            factors.clear();
            connectedVariables.clear();

            // factors that depend on at least variables[0] OR variables[1]
            for(size_t k = 0; k < 2; ++k) {
               for(typename GraphicalModelType::ConstFactorIterator it = gm_.factorsOfVariableBegin(variables[k]);
               it != gm_.factorsOfVariableEnd(variables[k]); ++it) {
                  factors.insert(*it);
                  for(size_t m = 0; m < gm_[*it].numberOfVariables(); ++m) {
                     connectedVariables.insert(gm_[*it].variableIndex(m));
                  }
               }
            }

            // factors that depend on at least variables[0] AND variables[1]
            /*
            for(typename GraphicalModelType::ConstFactorIterator it = gm_.factorsOfVariableBegin(variables[0]);
            it != gm_.factorsOfVariableEnd(variables[0]); ++it) {
               for(size_t k = 0; k<gm_[*it].numberOfVariables(); ++k) {
                  if(gm_[*it].variableIndex(k) == variables[1]) {
                     factors.insert(*it);
                     for(size_t m = 0; m < gm_[*it].numberOfVariables(); ++m) {
                        connectedVariables.insert(gm_[*it].variableIndex(m));
                     }
                     break;
                  }
               }
            }
            */

            // operate all found factors up
            IndependentFactorType localFactor(gm_,
               connectedVariables.begin(),
               connectedVariables.end(),
               OperatorType::template neutral<ValueType>());
            for(std::set<size_t>::const_iterator it = factors.begin(); it != factors.end(); ++it) {
               OperatorType::op(gm_[*it], localFactor);
            }

            // marginalize
            size_t indices[] = {0, 0};
            for(size_t k = 0; k < localFactor.numberOfVariables(); ++k) {
               if(localFactor.variableIndex(k) == variables[0]) {
                  indices[0] = k;
               }
               else if(localFactor.variableIndex(k) == variables[1]) {
                  indices[1] = k;
               }
            }
            ProbabilityType probEqual = 0;
            ProbabilityType probUnequal = 0;
            ShapeWalker< typename IndependentFactorType::ShapeIteratorType>
               walker(localFactor.shapeBegin(), localFactor.numberOfVariables());
            for(size_t k = 0; k < localFactor.size(); ++k, ++walker) {
               const ValueType value = localFactor(walker.coordinateTuple().begin());
               const ProbabilityType p = detail_swendsenwang::ValueToProbability<OperatorType, AccumulationType, ProbabilityType>::convert(value);
               if(walker.coordinateTuple()[indices[0]] == walker.coordinateTuple()[indices[1]]) {
                  probEqual += p;
               }
               else {
                  probUnequal += p;
               }
            }

            // normalize
            ProbabilityType sum = probEqual + probUnequal;
            if(sum == 0.0) {
               throw RuntimeError("Some local probabilities are exactly zero.");
            }
            probEqual /= sum;
            probUnequal /= sum;
            if(probEqual < parameter_.lowestAllowedProbability_ || probUnequal < parameter_.lowestAllowedProbability_) {
               throw RuntimeError("Marginal probabilities are smaller than the allowed minimum.");
            }

            edgeProbabilities_[variables[0]][j] = probUnequal;
         }
      }
   }
}

template<class GM, class ACC>
void
SwendsenWang<GM, ACC>::cluster
(
   Partition<size_t>& out
) const
{
   // randomly merge variables
   out.reset(gm_.numberOfVariables());
   opengm::RandomUniform<ProbabilityType> randomNumberGenerator(0.0, 1.0);
   size_t variables[] = {0, 0};
   for(variables[0] = 0; variables[0] < gm_.numberOfVariables(); ++variables[0]) {
      for(size_t j = 0; j < variableAdjacency_[variables[0]].size(); ++j) {
         variables[1] = variableAdjacency_[variables[0]][j];
         if(variables[0] < variables[1]) { // only once for each pair
            if(movemaker_.state(variables[0]) == movemaker_.state(variables[1])) {
               if(edgeProbabilities_[variables[0]][j] > randomNumberGenerator()) {
                  // turn edge on with probability edgeProbabilities_[variables[0]][variables[1]]
                  out.merge(variables[0], variables[1]);
               }
            }
         }
      }
   }
}

template<class SW>
inline void
SwendsenWangEmptyVisitor<SW>::operator()(
   const typename SwendsenWangEmptyVisitor<SW>::SwendsenWangType& sw,
   const size_t iteration,
   const size_t clusterSize,
   const bool accepted,
   const bool burningIn
) const {
}

template<class SW>
inline void
SwendsenWangVerboseVisitor<SW>::operator()(
   const typename SwendsenWangVerboseVisitor<SW>::SwendsenWangType& sw,
   const size_t iteration,
   const size_t clusterSize,
   const bool accepted,
   const bool burningIn
) const {
   std::cout << "Step " << iteration
      << ": " << "V_opt=" << sw.currentBestValue()
      << ", " << "V_markov=" << sw.markovValue()
      << ", " << "cs=" << clusterSize
      << ", " << (accepted ? "accepted" : "rejected")
      << ", " << (burningIn ? "burning in" : "sampling")
      << std::endl;
   //std::cout << "   arg_opt: ";
   //for(size_t j=0; j<sw.graphicalModel().numberOfVariables(); ++j) {
   //   std::cout << sw.currentBestState(j) << ' ';
   //}
   //std::cout << std::endl;
   //
   //std::cout << "   arg_markov: ";
   //for(size_t j=0; j<sw.graphicalModel().numberOfVariables(); ++j) {
   //   std::cout << sw.markovState(j) << ' ';
   //std::cout << std::endl;
}

template<class SW>
inline
SwendsenWangMarginalVisitor<SW>::SwendsenWangMarginalVisitor()
:  gm_(NULL),
   numberOfSamples_(0),
   numberOfAcceptedSamples_(0),
   numberOfRejectedSamples_(0),
   marginals_(),
   stateCache_()
{}

template<class SW>
inline
SwendsenWangMarginalVisitor<SW>::SwendsenWangMarginalVisitor(
   const typename SwendsenWangMarginalVisitor<SW>::GraphicalModelType& gm
)
:  gm_(&gm),
   numberOfSamples_(0),
   numberOfAcceptedSamples_(0),
   numberOfRejectedSamples_(0),
   marginals_(),
   stateCache_()
{}

template<class SW>
inline void
SwendsenWangMarginalVisitor<SW>::assign(
    const typename SwendsenWangMarginalVisitor<SW>::GraphicalModelType& gm
)
{
    gm_ = &gm;
}

template<class SW>
inline void
SwendsenWangMarginalVisitor<SW>::operator()(
   const typename SwendsenWangMarginalVisitor<SW>::SwendsenWangType& sw,
   const size_t iteration,
   const size_t clusterSize,
   const bool accepted,
   const bool burningIn
) {
   if(!burningIn) {
      ++numberOfSamples_;
      if(accepted) {
         ++numberOfAcceptedSamples_;
      }
      else {
         ++numberOfRejectedSamples_;
      }
      for(size_t j = 0; j < marginals_.size(); ++j) {
         for(size_t k = 0; k < marginals_[j].numberOfVariables(); ++k) {
            stateCache_[k] = sw.markovState(marginals_[j].variableIndex(k));
         }
         ++marginals_[j](stateCache_.begin());
      }
   }
}

template<class SW>
template<class VariableIndexIterator>
inline size_t
SwendsenWangMarginalVisitor<SW>::addMarginal(
   VariableIndexIterator begin,
   VariableIndexIterator end
) {
   marginals_.push_back(IndependentFactorType(*gm_, begin, end));
   if(marginals_.back().numberOfVariables() > stateCache_.size()) {
      stateCache_.resize(marginals_.back().numberOfVariables());
   }
   return marginals_.size() - 1;
}

template<class SW>
inline size_t
SwendsenWangMarginalVisitor<SW>::addMarginal(
   const size_t variableIndex
) {
   size_t variableIndices[] = {variableIndex};
   return addMarginal(variableIndices, variableIndices + 1);
}

template<class SW>
inline size_t
SwendsenWangMarginalVisitor<SW>::numberOfSamples() const {
   return numberOfSamples_;
}

template<class SW>
inline size_t
SwendsenWangMarginalVisitor<SW>::numberOfAcceptedSamples() const {
   return numberOfAcceptedSamples_;
}

template<class SW>
inline size_t
SwendsenWangMarginalVisitor<SW>::numberOfRejectedSamples() const {
   return numberOfRejectedSamples_;
}

template<class SW>
inline size_t
SwendsenWangMarginalVisitor<SW>::numberOfMarginals() const {
   return marginals_.size();
}

template<class SW>
inline const typename SwendsenWangMarginalVisitor<SW>::IndependentFactorType&
SwendsenWangMarginalVisitor<SW>::marginal(
   const size_t setIndex
) const {
   return marginals_[setIndex];
}

} // namespace opengm

#endif // #ifndef OPENGM_SWENDSENWANG_HXX