This file is indexed.

/usr/include/opengm/unittests/blackboxtester.hxx is in libopengm-dev 2.3.6+20160905-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#pragma once
#ifndef OPENGM_TEST_INFERENCE_BLACKBOXTESTER_HXX
#define OPENGM_TEST_INFERENCE_BLACKBOXTESTER_HXX


#ifdef OPENGM_TESTFILE
#define OPENGM_TESTFILE_FILENAME "/tmp/model.h5"
#include <opengm/graphicalmodel/graphicalmodel_hdf5.hxx>
#endif

#include <vector>
#include <typeinfo>

#include <opengm/opengm.hxx>
#include <opengm/unittests/test.hxx>
#include <opengm/inference/bruteforce.hxx>
#include <opengm/unittests/blackboxtests/blackboxtestbase.hxx>
#include <opengm/operations/minimizer.hxx>
#include <opengm/operations/maximizer.hxx>
#include <opengm/operations/integrator.hxx>

/// \cond HIDDEN_SYMBOLS

namespace opengm {
   template<class GM>
   class InferenceBlackBoxTester
   {
   public:
      typedef GM GraphicalModelType;
      template<class INF> void test(const typename INF::Parameter&, bool tValue=true, bool tArg=false, bool tMarg=false, bool tFacMarg=false);
      void addTest(BlackBoxTestBase<GraphicalModelType>*);
      ~InferenceBlackBoxTester();

   private:
      std::vector<BlackBoxTestBase<GraphicalModelType>*> testList;
   };

   //***************
   //IMPLEMENTATION
   //***************

   template<class GM>
   InferenceBlackBoxTester<GM>::~InferenceBlackBoxTester()
   {
      for(size_t testId = 0; testId < testList.size(); ++testId) {
         delete testList[testId];
      }
   }


   template<class GM>
   template<class INF>
   void InferenceBlackBoxTester<GM>::test(const typename INF::Parameter& infPara, bool tValue, bool tArg, bool tMarg, bool tFacMarg)
   {
      typedef typename GraphicalModelType::ValueType ValueType;
      typedef typename GraphicalModelType::OperatorType OperatorType;
      typedef typename INF::AccumulationType AccType;

      for(size_t testId = 0; testId < testList.size(); ++testId) {
         size_t numTests = testList[testId]->numberOfTests();
         BlackBoxBehaviour behaviour = testList[testId]->behaviour();
         std::cout << testList[testId]->infoText();
         std::cout << " " << std::flush;
         for(size_t n = 0; n < numTests; ++n) {
            std::cout << "*" << std::flush;
            GraphicalModelType gm = testList[testId]->getModel(n);
#ifdef OPENGM_TESTFILE
            std::cout<< "save test-file" << std::endl; 
            opengm::hdf5::save(gm,OPENGM_TESTFILE_FILENAME,"gm");
#endif
            //Run Algorithm
            bool exceptionFlag = false;
            std::vector<typename GM::LabelType> state;
            try{      
               INF inf(gm, infPara);
               InferenceTermination returnValue=inf.infer();
               OPENGM_TEST((returnValue==opengm::NORMAL) || (returnValue==opengm::CONVERGENCE)); 
               if(typeid(AccType) == typeid(opengm::Minimizer) || typeid(AccType) == typeid(opengm::Maximizer)) {
                  OPENGM_TEST(inf.arg(state)==opengm::NORMAL);
                  OPENGM_TEST(state.size()==gm.numberOfVariables());
                  for(size_t varId = 0; varId < gm.numberOfVariables(); ++varId) {
                     OPENGM_TEST(state[varId]<gm.numberOfLabels(varId));
                  }
                  { 
                     ValueType bound = inf.bound();
                     ValueType value = inf.value();
                     ValueType value2 = 0;
                     if(typeid(AccType) == typeid(opengm::Minimizer))
                        value2 = value + std::min<ValueType>(1e20,std::max<ValueType>(1e-4,fabs(value)))*1e-6;
                     if(typeid(AccType) == typeid(opengm::Maximizer))
                        value2 = value - std::min<ValueType>(1e20,std::max<ValueType>(1e-4,fabs(value)))*1e-6;
                   
                     std::cout << "value = " << value << "  ,  bound = " << bound << std::endl;
                     OPENGM_TEST(AccType::bop(bound,value2)|| bound==value2);
                  }
                  if(behaviour == opengm::OPTIMAL) {
                     std::vector<typename GM::LabelType> optimalState;
                     opengm::Bruteforce<GraphicalModelType, AccType> bf(gm);
                     OPENGM_TEST(bf.infer()==opengm::NORMAL);
                     OPENGM_TEST(bf.arg(optimalState)==opengm::NORMAL);
                     OPENGM_TEST(optimalState.size()==gm.numberOfVariables());
                     for(size_t i = 0; i < gm.numberOfVariables(); ++i) {
                        OPENGM_TEST(optimalState[i]<gm.numberOfLabels(i));
                     }
                     OPENGM_TEST_EQUAL_TOLERANCE(gm.evaluate(state), gm.evaluate(optimalState), 0.00001); 
                     //testEqualSequence(states1.begin(), states1.end(), states2.begin());
                  }
               }
               if(tMarg){
                  typename GM::IndependentFactorType out;
                  for(size_t varId = 0; varId < gm.numberOfVariables(); ++varId) {
                     OPENGM_TEST(inf.marginal(varId,out)==opengm::NORMAL);
                  }
               }
               if(tFacMarg){
                  typename GM::IndependentFactorType out;
                  for(size_t factorId = 0; factorId < gm.numberOfFactors(); ++factorId) {
                     OPENGM_TEST(inf.factorMarginal(factorId,out)==opengm::NORMAL);
                  }
               } 
            } catch(std::exception& e) {
               exceptionFlag = true;
               std::cout << e.what() <<std::endl;
            }
            if(behaviour == opengm::FAIL) {
               OPENGM_TEST(exceptionFlag);
            }else{
               OPENGM_TEST(!exceptionFlag);
            }
         }
         if(behaviour == opengm::OPTIMAL) {
            std::cout << " OPTIMAL!" << std::endl;
         }else if(behaviour == opengm::PASS) {
            std::cout << " PASS!" << std::endl;
         }else{
            std::cout << " OK!" << std::endl;
         }
      }
   }

   template<class GM>
   void InferenceBlackBoxTester<GM>::addTest(BlackBoxTestBase<GraphicalModelType>* test)
   {
      testList.push_back(test);
   }

/*
 template<class GM, class INF>
 void InferenceBlackBoxTest::test
 (
 const INF::Parameter& infPara,
 const GM& gm,
 const BlackBoxBehaviour behaviour) const
 {
 typedef GM GraphicalModelType;
 typedef INF InfType;
 typedef typename GraphicalModelType::ExplicitFunctionType ExplicitFunctionType;
 typedef typename GraphicalModelType::SparseFunctionType SparseFunctionType;
 typedef typename GraphicalModelType::ImplicitFunctionType ImplicitFunctionType;
 typedef typename GraphicalModelType::FunctionIdentifier FunctionIdentifier;
 typedef typename GraphicalModelType::ValueType ValueType;
 typedef typename GraphicalModelType::OperatorType OperatorType;
 typedef typename InfType::AccumulationType AccType;
 typedef typename InfType::Parameter InfParaType;
 //Run Algorithm
 bool exceptionFlag = false;
 std::vector<size_t> state;
 try{
 InfType inf(gm, infPara);
 OPENGM_TEST(inf.infer()==opengm::NORMAL);
 if(typeid(AccType) == typeid(opengm::Minimizer) || typeid(AccType) == typeid(opengm::Maximizer)) {
 OPENGM_TEST(inf.arg(state)==opengm::NORMAL);
 OPENGM_TEST(state.size()==gm.numberOfVariabl      {
 std::string str;
 str = "    - 2nd order grid model (" + height_ + "x" + width_;
 str += ", " + varStates_ ? "~" : "" + numStates_ + ") ";
 str += withUnary_ ? "with unary" : "without unary and " + functionString(function_);
 return str;
 }es());
 for(size_t i = 0; i < gm.numberOfVariables(); ++i) {
 OPENGM_TEST(state[i]<gm.numberOfLabels(i));
 }
 {
 const ValueType value = gm.evaluate(state);
 const ValueType bound = inf.bound();
 OPENGM_TEST(AccType::bop(value,bound));
 }
 }
 if(typeid(AccType) == typeid(opengm::Integrator)) {
 for(size_t varId = 0; varId < gm.numberOfVariables; ++varId) {
 OPENGM_TEST(inf.marginal(varId)==opengm::NORMAL);
 }
 for(size_t factorId = 0; factorId < gm.numberOfFactors; ++factorId) {
 OPENGM_TEST(inf.factorMarginal(factorId)==opengm::NORMAL);
 }
 }
 } catch(std::exception& e) {
 exceptionFlag = true;
 }
 if(behaviour == FAIL) {
 OPENGM_ASSERT(exceptionFlag);
 }else{
 OPENGM_ASSERT(!exceptionFlag);
 }

 if(behaviour == OPTIMAL) {
 std::vector<size_t> optimalState;
 opengm::Bruteforce<GraphicalModelType, AccType> bf(gm);
 OPENGM_TEST(bf.infer()==opengm::NORMAL);
 OPENGM_TEST(bf.arg(optimalState)==opengm::NORMAL);
 OPENGM_TEST(optimalState.size()==gm.numberOfVariables());
 for(size_t i = 0; i < gm.numberOfVariables(); ++i)
 OPENGM_TEST(optimalState[i]<gm.numberOfLabels(i));

 OPENGM_TEST_EQUAL_TOLERANCE(gm.evaluate(state), gm.evaluate(optimalState), 0.00001);
 //testEqualSequence(states1.begin(), states1.end(), states2.begin());
 }
 }

 template<class GM, class INF>
 void InferenceBlackBoxTest::
 test(
 const INF::Parameter& para,
 const BlackBoxTest test,
 const BlackBoxFunction function,
 const BlackBoxVar var,
 const BlackBoxBehaviour behaviour,
 const size_t orders) const
 {
 opengm::SyntheticModelGenerator2 modelGenerator;
 opengm::SyntheticModelGenerator2::Parameter modelGeneratorPara;
 size_t order = (size_t) log2((double) (orders)) + 1;
 modelGeneratorPara.functionParameters_.resize(order);
 modelGeneratorPara.functionTypes_.resize(order, opengm::SyntheticModelGenerator2::URANDOM);
 modelGeneratorPara.sharedFunctions_.resize(order, false);

 size_t tester = 1;
 for(size_t i = 0; i < order; ++i) {
 if(orders & tester == 0) {
 modelGeneratorPara.functionTypes_[i] = opengm::SyntheticModelGenerator2::EMPTY;
 }else{
 if(i > 0) {
 modelGeneratorPara.functionTypes_[i] = opengm::SyntheticModelGenerator2::URANDOM;
 }
 }
 tester *= 2;
 }

 if(test == GRID)
 numberOfVariables_ = height_ * width_;
 std::vector<size_t> numberOfLabels;
 switch (var) {
 case RANDOM:
 numberOfLabels.resize(numberOfVariables_);
 for(size_t i = 0; i < numberOfLabels.size(); ++i) {
 numberOfLabels[i] = rand() % numberOfStates_ + 1;
 }
 break;
 case FIX:
 numberOfLabels.resize(numberOfVariables_, numberOfStates_);
 break;
 case BINARY:
 numberOfLabels.resize(numberOfVariables_, 2);
 break;
 }

 switch (test) {
 case STAR:
 GraphicalModelType gm = modelGenerator.buildStar(numberOfVariables_, numberOfLabels, modelGeneratorPara);
 break;
 case TREE:
 break;
 case GRID:
 GraphicalModelType gm = modelGenerator.buildGrid(height_, width_, numberOfLabels, modelGeneratorPara);
 break;
 case FULL:
 GraphicalModelType gm = modelGenerator.buildFull(numberOfVariables_, numberOfLabels, modelGeneratorPara);
 break;
 }
 }
 */
}

/// \endcond

#endif // #ifndef OPENGM_TEST_INFERENCE_BLACKBOXTESTER_HXX