/usr/include/scythestat/ide.h is in libscythestat-dev 1.0.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 | /*
* Scythe Statistical Library Copyright (C) 2000-2002 Andrew D. Martin
* and Kevin M. Quinn; 2002-present Andrew D. Martin, Kevin M. Quinn,
* and Daniel Pemstein. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify under the terms of the GNU General Public License as
* published by Free Software Foundation; either version 2 of the
* License, or (at your option) any later version. See the text files
* COPYING and LICENSE, distributed with this source code, for further
* information.
* --------------------------------------------------------------------
* scythestat/ide.h
*
*
*/
/*! \file ide.h
*
* \brief Definitions for inversion and decomposition functions that
* operate on Scythe's Matrix objects.
*
* This file provides a number of common inversion and decomposition
* routines that operate on Matrix objects. It also provides related
* functions for solving linear systems of equations and calculating
* the determinant of a Matrix.
*
* Scythe will use LAPACK/BLAS routines to perform these operations on
* concrete column-major matrices of double-precision floating point
* numbers if LAPACK/BLAS is available and you compile your program
* with the SCYTHE_LAPACK flag enabled.
*
* \note As is the case throughout the library, we provide both
* general and default template definitions of the Matrix-returning
* functions in this file, explicitly providing documentation for only
* the general template versions. As is also often the case, Doxygen
* does not always correctly add the default template definition to
* the function list below; there is always a default template
* definition available for every function.
*/
/* TODO: This interface exposes the user to too much implementation.
* We need a solve function and a solver object. By default, solve
* would run lu_solve and the solver factory would return lu_solvers
* (or perhaps a solver object encapsulating an lu_solver). Users
* could choose cholesky when appropriate. Down the road, qr or svd
* would become the default and we'd be able to handle non-square
* matrices. Instead of doing an lu_decomp or a cholesky and keeping
* track of the results to repeatedly solve for different b's with A
* fixed in Ax=b, you'd just call the operator() on your solver object
* over and over, passing the new b each time. No decomposition
* specific solvers (except as toggles to the solver object and
* solve function). We'd still provide cholesky and lu_decomp. We
* could also think about a similar approach to inversion (one
* inversion function with an option for method).
*
* If virtual dispatch in C++ wasn't such a performance killer (no
* compiler optimization across virtual calls!!!) there would be an
* obvious implementation of this interface using simple polymorphism.
* Unfortunately, we need compile-time typing to maintain performance
* and makes developing a clean interface that doesn't force users to
* be template wizards much harder. Initial experiments with the
* Barton and Nackman trick were ugly. The engine approach might work
* a bit better but has its problems too. This is not going to get
* done for the 1.0 release, but it is something we should come back
* to.
*
*/
#ifndef SCYTHE_IDE_H
#define SCYTHE_IDE_H
#ifdef SCYTHE_COMPILE_DIRECT
#include "matrix.h"
#include "error.h"
#include "defs.h"
#ifdef SCYTHE_LAPACK
#include "lapack.h"
#include "stat.h"
#endif
#else
#include "scythestat/matrix.h"
#include "scythestat/error.h"
#include "scythestat/defs.h"
#ifdef SCYTHE_LAPACK
#include "scythestat/lapack.h"
#include "scythestat/stat.h"
#endif
#endif
#include <cmath>
#include <algorithm>
namespace scythe {
namespace {
typedef unsigned int uint;
}
/*!
* \brief Cholesky decomposition of a symmetric positive-definite
* matrix.
*
* This function performs Cholesky decomposition. That is, given a
* symmetric positive definite Matrix, \f$A\f$, cholesky() returns a
* lower triangular Matrix \f$L\f$ such that \f$A = LL^T\f$. This
* function is faster than lu_decomp() and, therefore, preferable in
* cases where one's Matrix is symmetric positive definite.
*
* \param A The symmetric positive definite Matrix to decompose.
*
* \see chol_solve(const Matrix<T,PO1,PS1> &, const Matrix<T,PO2,PS2> &)
* \see chol_solve(const Matrix<T,PO1,PS1> &, const Matrix<T,PO2,PS2> &, const Matrix<T,PO3,PS3> &)
* \see lu_decomp(Matrix<T,PO1,PS1>, Matrix<T,PO2,Concrete>&, Matrix<T,PO3,Concrete>&, Matrix<unsigned int, PO4, Concrete>&)
*
* \throw scythe_alloc_error (Level 1)
* \throw scythe_dimension_error (Level 1)
* \throw scythe_null_error (Level 1)
* \throw scythe_type_error (Level 2)
* \throw scythe_alloc_error (Level 1)
*
*/
template <matrix_order RO, matrix_style RS, typename T,
matrix_order PO, matrix_style PS>
Matrix<T, RO, RS>
cholesky (const Matrix<T, PO, PS>& A)
{
SCYTHE_CHECK_10(! A.isSquare(), scythe_dimension_error,
"Matrix not square");
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"Matrix is NULL");
// Rounding errors can make this problematic. Leaving out for now
//SCYTHE_CHECK_20(! A.isSymmetric(), scythe_type_error,
// "Matrix not symmetric");
Matrix<T,RO,Concrete> temp (A.rows(), A.cols(), false);
T h;
if (PO == Row) { // row-major optimized
for (uint i = 0; i < A.rows(); ++i) {
for (uint j = i; j < A.cols(); ++j) {
h = A(i,j);
for (uint k = 0; k < i; ++k)
h -= temp(i, k) * temp(j, k);
if (i == j) {
SCYTHE_CHECK_20(h <= (T) 0, scythe_type_error,
"Matrix not positive definite");
temp(i,i) = std::sqrt(h);
} else {
temp(j,i) = (((T) 1) / temp(i,i)) * h;
temp(i,j) = (T) 0;
}
}
}
} else { // col-major optimized
for (uint j = 0; j < A.cols(); ++j) {
for (uint i = j; i < A.rows(); ++i) {
h = A(i, j);
for (uint k = 0; k < j; ++k)
h -= temp(j, k) * temp(i, k);
if (i == j) {
SCYTHE_CHECK_20(h <= (T) 0, scythe_type_error,
"Matrix not positive definite");
temp(j,j) = std::sqrt(h);
} else {
temp(i,j) = (((T) 1) / temp(j,j)) * h;
temp(j,i) = (T) 0;
}
}
}
}
SCYTHE_VIEW_RETURN(T, RO, RS, temp)
}
template <typename T, matrix_order O, matrix_style S>
Matrix<T, O, Concrete>
cholesky (const Matrix<T,O,S>& A)
{
return cholesky<O,Concrete>(A);
}
namespace {
/* This internal routine encapsulates the
* algorithm used within chol_solve and lu_solve.
*/
template <typename T,
matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2,
matrix_order PO3, matrix_style PS3>
inline void
solve(const Matrix<T,PO1,PS1>& L, const Matrix<T,PO2,PS2>& U,
Matrix<T,PO3,PS3> b, T* x, T* y)
{
T sum;
/* TODO: Consider optimizing for ordering. Experimentation
* shows performance gains are probably minor (compared col-major
* with and without lapack solve routines).
*/
// solve M*y = b
for (uint i = 0; i < b.size(); ++i) {
sum = T (0);
for (uint j = 0; j < i; ++j) {
sum += L(i,j) * y[j];
}
y[i] = (b[i] - sum) / L(i, i);
}
// solve M'*x = y
if (U.isNull()) { // A= LL^T
for (int i = b.size() - 1; i >= 0; --i) {
sum = T(0);
for (uint j = i + 1; j < b.size(); ++j) {
sum += L(j,i) * x[j];
}
x[i] = (y[i] - sum) / L(i, i);
}
} else { // A = LU
for (int i = b.size() - 1; i >= 0; --i) {
sum = T(0);
for (uint j = i + 1; j < b.size(); ++j) {
sum += U(i,j) * x[j];
}
x[i] = (y[i] - sum) / U(i, i);
}
}
}
}
/*!\brief Solve \f$Ax=b\f$ for x via backward substitution, given a
* lower triangular matrix resulting from Cholesky decomposition
*
* This function solves the system of equations \f$Ax = b\f$ via
* backward substitution. \a L is the lower triangular matrix generated
* by Cholesky decomposition such that \f$A = LL'\f$.
*
* This function is intended for repeatedly solving systems of
* equations based on \a A. That is \a A stays constant while \a
* b varies.
*
* \param A A symmetric positive definite Matrix.
* \param b A column vector with as many rows as \a A.
* \param M The lower triangular matrix from the Cholesky decomposition of \a A.
*
* \see chol_solve(const Matrix<T,PO1,PS1>&, const Matrix<T,PO2,PS2>&)
* \see cholesky(const Matrix<T, PO, PS>&)
* \see lu_solve (const Matrix<T,PO1,PS1>&, const Matrix<T,PO2,PS2>&, const Matrix<T,PO3,PS3>&, const Matrix<T,PO4,PS4>&, const Matrix<unsigned int, PO5, PS5>&)
* \see lu_solve (Matrix<T,PO1,PS1>, const Matrix<T,PO2,PS2>&)
*
* \throw scythe_alloc_error (Level 1)
* \throw scythe_null_error (Level 1)
* \throw scythe_dimension_error (Level 1)
* \throw scythe_conformation_error (Level 1)
*
*/
template <matrix_order RO, matrix_style RS, typename T,
matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2,
matrix_order PO3, matrix_style PS3>
Matrix<T,RO,RS>
chol_solve (const Matrix<T,PO1,PS1>& A, const Matrix<T,PO2,PS2>& b,
const Matrix<T,PO3,PS3>& M)
{
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"A is NULL")
SCYTHE_CHECK_10(! b.isColVector(), scythe_dimension_error,
"b must be a column vector");
SCYTHE_CHECK_10(A.rows() != b.rows(), scythe_conformation_error,
"A and b do not conform");
SCYTHE_CHECK_10(A.rows() != M.rows(), scythe_conformation_error,
"A and M do not conform");
SCYTHE_CHECK_10(! M.isSquare(), scythe_dimension_error,
"M must be square");
T *y = new T[A.rows()];
T *x = new T[A.rows()];
solve(M, Matrix<>(), b, x, y);
Matrix<T,RO,RS> result(A.rows(), 1, x);
delete[]x;
delete[]y;
return result;
}
template <typename T, matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2,
matrix_order PO3, matrix_style PS3>
Matrix<T,PO1,Concrete>
chol_solve (const Matrix<T,PO1,PS1>& A, const Matrix<T,PO2,PS2>& b,
const Matrix<T,PO3,PS3>& M)
{
return chol_solve<PO1,Concrete>(A,b,M);
}
/*!\brief Solve \f$Ax=b\f$ for x via backward substitution,
* using Cholesky decomposition
*
* This function solves the system of equations \f$Ax = b\f$ via
* backward substitution and Cholesky decomposition. \a A must be a
* symmetric positive definite matrix for this method to work. This
* function calls cholesky() to perform the decomposition.
*
* \param A A symmetric positive definite matrix.
* \param b A column vector with as many rows as \a A.
*
* \see chol_solve(const Matrix<T,PO1,PS1>&, const Matrix<T,PO2,PS2>&, const Matrix<T,PO3,PS3>&)
* \see cholesky(const Matrix<T, PO, PS>&)
* \see lu_solve (const Matrix<T,PO1,PS1>&, const Matrix<T,PO2,PS2>&, const Matrix<T,PO3,PS3>&, const Matrix<T,PO4,PS4>&, const Matrix<unsigned int, PO5, PS5>&)
* \see lu_solve (Matrix<T,PO1,PS1>, const Matrix<T,PO2,PS2>&)
*
* \throw scythe_alloc_error (Level 1)
* \throw scythe_null_error (Level 1)
* \throw scythe_conformation_error (Level 1)
* \throw scythe_dimension_error (Level 1)
* \throw scythe_type_error (Level 2)
* \throw scythe_alloc_error (Level 1)
*
*/
template <matrix_order RO, matrix_style RS, typename T,
matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2>
Matrix<T,RO,RS>
chol_solve (const Matrix<T,PO1,PS1>& A, const Matrix<T,PO2,PS2>& b)
{
/* NOTE: cholesky() call does check for square/posdef of A,
* and the overloaded chol_solve call handles dimensions
*/
return chol_solve<RO,RS>(A, b, cholesky<RO,Concrete>(A));
}
template <typename T, matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2>
Matrix<T,PO1,Concrete>
chol_solve (const Matrix<T,PO1,PS1>& A, const Matrix<T,PO2,PS2>& b)
{
return chol_solve<PO1,Concrete>(A, b);
}
/*!\brief Calculates the inverse of a symmetric positive definite
* matrix, given a lower triangular matrix resulting from Cholesky
* decomposition.
*
* This function returns the inverse of a symmetric positive
* definite matrix. Unlike the one-parameter version, this function
* requires the caller to perform Cholesky decomposition on the
* matrix to invert, ahead of time.
*
* \param A The symmetric positive definite matrix to invert.
* \param M The lower triangular matrix from the Cholesky decomposition of \a A.
*
* \see invpd(const Matrix<T, PO, PS>&)
* \see inv(const Matrix<T,PO1,PS1>&, const Matrix<T,PO2,PS2>&, const Matrix<T,PO3,PS3>&, const Matrix<unsigned int,PO4,PS4>&)
* \see inv(const Matrix<T, PO, PS>&)
* \see cholesky(const Matrix<T, PO, PS>&)
*
* \throw scythe_alloc_error (Level 1)
* \throw scythe_null_error (Level 1)
* \throw scythe_conformation_error (Level 1)
* \throw scythe_dimension_error (Level 1)
*/
template <matrix_order RO, matrix_style RS, typename T,
matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2>
Matrix<T,RO,RS>
invpd (const Matrix<T,PO1,PS1>& A, const Matrix<T,PO2,PS2>& M)
{
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"A is NULL")
SCYTHE_CHECK_10(! A.isSquare(), scythe_dimension_error,
"A is not square")
SCYTHE_CHECK_10(A.rows() != M.cols() || A.cols() != M.rows(),
scythe_conformation_error, "A and M do not conform");
// for chol_solve block
T *y = new T[A.rows()];
T *x = new T[A.rows()];
Matrix<T, RO, Concrete> b(A.rows(), 1); // full of zeros
Matrix<T, RO, Concrete> null;
// For final answer
Matrix<T, RO, Concrete> Ainv(A.rows(), A.cols(), false);
for (uint k = 0; k < A.rows(); ++k) {
b[k] = (T) 1;
solve(M, null, b, x, y);
b[k] = (T) 0;
for (uint l = 0; l < A.rows(); ++l)
Ainv(l,k) = x[l];
}
delete[] y;
delete[] x;
SCYTHE_VIEW_RETURN(T, RO, RS, Ainv)
}
template <typename T, matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2>
Matrix<T,PO1,Concrete>
invpd (const Matrix<T,PO1,PS1>& A, const Matrix<T,PO2,PS2>& M)
{
return invpd<PO1,Concrete>(A, M);
}
/*!\brief Calculate the inverse of a symmetric positive definite
* matrix.
*
* This function returns the inverse of a symmetric positive definite
* matrix, using cholesky() to do the necessary decomposition. This
* method is significantly faster than the generalized inverse
* function.
*
* \param A The symmetric positive definite matrix to invert.
*
* \see invpd(const Matrix<T, PO1, PS1>&, const Matrix<T, PO2, PS2>&)
* \see inv (const Matrix<T,PO1,PS1>&, const Matrix<T,PO2,PS2>&, const Matrix<T,PO3,PS3>&, const Matrix<unsigned int,PO4,PS4>&)
* \see inv (const Matrix<T, PO, PS>&)
*
* \throw scythe_alloc_error (Level 1)
* \throw scythe_null_error (Level 1)
* \throw scythe_conformation_error (Level 1)
* \throw scythe_dimension_error (Level 1)
* \throw scythe_type_error (Level 2)
*/
template <matrix_order RO, matrix_style RS, typename T,
matrix_order PO, matrix_style PS>
Matrix<T, RO, RS>
invpd (const Matrix<T, PO, PS>& A)
{
// Cholesky checks to see if A is square and symmetric
return invpd<RO,RS>(A, cholesky<RO,Concrete>(A));
}
template <typename T, matrix_order O, matrix_style S>
Matrix<T, O, Concrete>
invpd (const Matrix<T,O,S>& A)
{
return invpd<O,Concrete>(A);
}
/* This code is based on Algorithm 3.4.1 of Golub and Van Loan 3rd
* edition, 1996. Major difference is in how the output is
* structured. Returns the sign of the row permutation (used by
* det). Internal function, doesn't need doxygen.
*/
namespace {
template <matrix_order PO1, matrix_style PS1, typename T,
matrix_order PO2, matrix_order PO3, matrix_order PO4>
inline T
lu_decomp_alg(Matrix<T,PO1,PS1>& A, Matrix<T,PO2,Concrete>& L,
Matrix<T,PO3,Concrete>& U,
Matrix<unsigned int, PO4, Concrete>& perm_vec)
{
if (A.isRowVector()) {
L = Matrix<T,PO2,Concrete> (1, 1, true, 1); // all 1s
U = A;
perm_vec = Matrix<uint, PO4, Concrete>(1, 1); // all 0s
return (T) 0;
}
L = U = Matrix<T, PO2, Concrete>(A.rows(), A.cols(), false);
perm_vec = Matrix<uint, PO3, Concrete> (A.rows() - 1, 1, false);
uint pivot;
T temp;
T sign = (T) 1;
for (uint k = 0; k < A.rows() - 1; ++k) {
pivot = k;
// find pivot
for (uint i = k; i < A.rows(); ++i) {
if (std::fabs(A(pivot,k)) < std::fabs(A(i,k)))
pivot = i;
}
SCYTHE_CHECK_20(A(pivot,k) == (T) 0, scythe_type_error,
"Matrix is singular");
// permute
if (k != pivot) {
sign *= -1;
for (uint i = 0; i < A.rows(); ++i) {
temp = A(pivot,i);
A(pivot,i) = A(k,i);
A(k,i) = temp;
}
}
perm_vec[k] = pivot;
for (uint i = k + 1; i < A.rows(); ++i) {
A(i,k) = A(i,k) / A(k,k);
for (uint j = k + 1; j < A.rows(); ++j)
A(i,j) = A(i,j) - A(i,k) * A(k,j);
}
}
L = A;
for (uint i = 0; i < A.rows(); ++i) {
for (uint j = i; j < A.rows(); ++j) {
U(i,j) = A(i,j);
L(i,j) = (T) 0;
L(i,i) = (T) 1;
}
}
return sign;
}
}
/* Calculates the LU Decomposition of a square Matrix */
/* Note that the L, U, and perm_vec must be concrete. A is passed by
* value, because it is changed during the decomposition. If A is a
* view, it will get mangled, but the decomposition will work fine.
* Not sure what the copy/view access trade-off is, but passing a
* view might speed things up if you don't care about messing up
* your matrix.
*/
/*! \brief LU decomposition of a square matrix.
*
* This function performs LU decomposition. That is, given a
* non-singular square matrix \a A and three matrix references, \a
* L, \a U, and \a perm_vec, lu_decomp fills the latter three
* matrices such that \f$LU = A\f$. This method does not actually
* calculate the LU decomposition of \a A, but of a row-wise
* permutation of \a A. This permutation is recorded in perm_vec.
*
* \note Note that \a L, \a U, and \a perm_vec must be concrete.
* \a A is passed by value because the function modifies it during
* the decomposition. Users should generally avoid passing Matrix
* views as the first argument to this function because this
* results in modification to the Matrix being viewed.
*
* \param A Non-singular square matrix to decompose.
* \param L Lower triangular portion of LU decomposition of A.
* \param U Upper triangular portion of LU decomposition of A.
* \param perm_vec Permutation vector recording the row-wise permutation of A actually decomposed by the algorithm.
*
* \see cholesky (const Matrix<T, PO, PS>&)
* \see lu_solve (const Matrix<T,PO1,PS1>&, const Matrix<T,PO2,PS2>&, const Matrix<T,PO3,PS3>&, const Matrix<T,PO4,PS4>&, const Matrix<unsigned int, PO5, PS5>&)
* \see lu_solve (Matrix<T,PO1,PS1>, const Matrix<T,PO2,PS2>&)
*
* \throw scythe_null_error (Level 1)
* \throw scythe_dimension_error (Level 1)
* \throw scythe_type_error (Level 2)
*/
template <matrix_order PO1, matrix_style PS1, typename T,
matrix_order PO2, matrix_order PO3, matrix_order PO4>
void
lu_decomp(Matrix<T,PO1,PS1> A, Matrix<T,PO2,Concrete>& L,
Matrix<T,PO3,Concrete>& U,
Matrix<unsigned int, PO4, Concrete>& perm_vec)
{
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"A is NULL")
SCYTHE_CHECK_10(! A.isSquare(), scythe_dimension_error,
"Matrix A not square");
lu_decomp_alg(A, L, U, perm_vec);
}
/* lu_solve overloaded: you need A, b + L, U, perm_vec from
* lu_decomp.
*
*/
/*! \brief Solve \f$Ax=b\f$ for x via forward and backward
* substitution, given the results of a LU decomposition.
*
* This function solves the system of equations \f$Ax = b\f$ via
* forward and backward substitution and LU decomposition. \a A
* must be a non-singular square matrix for this method to work.
* This function requires the actual LU decomposition to be
* performed ahead of time; by lu_decomp() for example.
*
* This function is intended for repeatedly solving systems of
* equations based on \a A. That is \a A stays constant while \a
* b varies.
*
* \param A Non-singular square Matrix to decompose, passed by reference.
* \param b Column vector with as many rows as \a A.
* \param L Lower triangular portion of LU decomposition of \a A.
* \param U Upper triangular portion of LU decomposition of \a A.
* \param perm_vec Permutation vector recording the row-wise permutation of \a A actually decomposed by the algorithm.
*
* \see lu_solve (Matrix<T,PO1,PS1>, const Matrix<T,PO2,PS2>&)
* \see lu_decomp(Matrix<T,PO1,PS1>, Matrix<T,PO2,Concrete>&, Matrix<T,PO3,Concrete>&, Matrix<unsigned int, PO4, Concrete>&)
* \see chol_solve(const Matrix<T,PO1,PS1> &, const Matrix<T,PO2,PS2> &)
* \see chol_solve(const Matrix<T,PO1,PS1> &, const Matrix<T,PO2,PS2> &, const Matrix<T,PO3,PS3> &)
*
* \throw scythe_null_error (Level 1)
* \throw scythe_dimension_error (Level 1)
* \throw scythe_conformation_error (Level 1)
*/
template <matrix_order RO, matrix_style RS, typename T,
matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2,
matrix_order PO3, matrix_style PS3,
matrix_order PO4, matrix_style PS4,
matrix_order PO5, matrix_style PS5>
Matrix<T, RO, RS>
lu_solve (const Matrix<T,PO1,PS1>& A, const Matrix<T,PO2,PS2>& b,
const Matrix<T,PO3,PS3>& L, const Matrix<T,PO4,PS4>& U,
const Matrix<unsigned int, PO5, PS5> &perm_vec)
{
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"A is NULL")
SCYTHE_CHECK_10(! b.isColVector(), scythe_dimension_error,
"b is not a column vector");
SCYTHE_CHECK_10(! A.isSquare(), scythe_dimension_error,
"A is not square");
SCYTHE_CHECK_10(A.rows() != b.rows(), scythe_conformation_error,
"A and b have different row sizes");
SCYTHE_CHECK_10(A.rows() != L.rows() || A.rows() != U.rows() ||
A.cols() != L.cols() || A.cols() != U.cols(),
scythe_conformation_error,
"A, L, and U do not conform");
SCYTHE_CHECK_10(perm_vec.rows() + 1 != A.rows(),
scythe_conformation_error,
"perm_vec does not have exactly one less row than A");
T *y = new T[A.rows()];
T *x = new T[A.rows()];
Matrix<T,RO,Concrete> bb = row_interchange(b, perm_vec);
solve(L, U, bb, x, y);
Matrix<T,RO,RS> result(A.rows(), 1, x);
delete[]x;
delete[]y;
return result;
}
template <typename T, matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2,
matrix_order PO3, matrix_style PS3,
matrix_order PO4, matrix_style PS4,
matrix_order PO5, matrix_style PS5>
Matrix<T, PO1, Concrete>
lu_solve (const Matrix<T,PO1,PS1>& A, const Matrix<T,PO2,PS2>& b,
const Matrix<T,PO3,PS3>& L, const Matrix<T,PO4,PS4>& U,
const Matrix<unsigned int, PO5, PS5> &perm_vec)
{
return lu_solve<PO1,Concrete>(A, b, L, U, perm_vec);
}
/*! \brief Solve \f$Ax=b\f$ for x via forward and backward
* substitution, using LU decomposition
*
* This function solves the system of equations \f$Ax = b\f$ via
* forward and backward substitution and LU decomposition. \a A
* must be a non-singular square matrix for this method to work.
*
* \param A A non-singular square Matrix to decompose.
* \param b A column vector with as many rows as \a A.
*
* \see lu_solve (const Matrix<T,PO1,PS1>&, const Matrix<T,PO2,PS2>&, const Matrix<T,PO3,PS3>&, const Matrix<T,PO4,PS4>&, const Matrix<unsigned int, PO5, PS5>&)
* \see lu_decomp(Matrix<T,PO1,PS1>, Matrix<T,PO2,Concrete>&, Matrix<T,PO3,Concrete>&, Matrix<unsigned int, PO4, Concrete>&)
* \see chol_solve(const Matrix<T,PO1,PS1> &, const Matrix<T,PO2,PS2> &)
* \see chol_solve(const Matrix<T,PO1,PS1> &, const Matrix<T,PO2,PS2> &, const Matrix<T,PO3,PS3> &)
*
* \throw scythe_null_error (Level 1)
* \throw scythe_dimension_error (Level 1)
* \throw scythe_conformation_error (Level 1)
* \throw scythe_type_error (Level 2)
*/
template <matrix_order RO, matrix_style RS, typename T,
matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2>
Matrix<T,RO,RS>
lu_solve (Matrix<T,PO1,PS1> A, const Matrix<T,PO2,PS2>& b)
{
// step 1 compute the LU factorization
Matrix<T, RO, Concrete> L, U;
Matrix<uint, RO, Concrete> perm_vec;
lu_decomp_alg(A, L, U, perm_vec);
return lu_solve<RO,RS>(A, b, L, U, perm_vec);
}
template <typename T, matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2>
Matrix<T,PO1,Concrete>
lu_solve (Matrix<T,PO1,PS1> A, const Matrix<T,PO2,PS2>& b)
{
// Slight code rep here, but very few lines
// step 1 compute the LU factorization
Matrix<T, PO1, Concrete> L, U;
Matrix<uint, PO1, Concrete> perm_vec;
lu_decomp_alg(A, L, U, perm_vec);
return lu_solve<PO1,Concrete>(A, b, L, U, perm_vec);
}
/*!\brief Calculates the inverse of a non-singular square matrix,
* given an LU decomposition.
*
* This function returns the inverse of an arbitrary, non-singular,
* square matrix \a A when passed a permutation of an LU
* decomposition, such as that returned by lu_decomp(). A
* one-parameter version of this function exists that does not
* require the user to pre-decompose the system.
*
* \param A The Matrix to be inverted.
* \param L A Lower triangular matrix resulting from decomposition.
* \param U An Upper triangular matrix resulting from decomposition.
* \param perm_vec The permutation vector recording the row-wise permutation of \a A actually decomposed by the algorithm.
*
* \see inv (const Matrix<T, PO, PS>&)
* \see invpd(const Matrix<T, PO, PS>&)
* \see invpd(const Matrix<T, PO1, PS1>&, const Matrix<T, PO2, PS2>&)
* \see lu_decomp(Matrix<T,PO1,PS1>, Matrix<T,PO2,Concrete>&, Matrix<T,PO3,Concrete>&, Matrix<unsigned int, PO4, Concrete>&)
*
* \throw scythe_null_error(Level 1)
* \throw scythe_dimension_error (Level 1)
* \throw scythe_conformation_error (Level 1)
*/
template<matrix_order RO, matrix_style RS, typename T,
matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2,
matrix_order PO3, matrix_style PS3,
matrix_order PO4, matrix_style PS4>
Matrix<T,RO,RS>
inv (const Matrix<T,PO1,PS1>& A,
const Matrix<T,PO2,PS2>& L, const Matrix<T,PO3,PS3>& U,
const Matrix<unsigned int,PO4,PS4>& perm_vec)
{
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"A is NULL")
SCYTHE_CHECK_10 (! A.isSquare(), scythe_dimension_error,
"A is not square");
SCYTHE_CHECK_10(A.rows() != L.rows() || A.rows() != U.rows() ||
A.cols() != L.cols() || A.cols() != U.cols(),
scythe_conformation_error,
"A, L, and U do not conform");
SCYTHE_CHECK_10(perm_vec.rows() + 1 != A.rows()
&& !(A.isScalar() && perm_vec.isScalar()),
scythe_conformation_error,
"perm_vec does not have exactly one less row than A");
// For the final result
Matrix<T,RO,Concrete> Ainv(A.rows(), A.rows(), false);
// for the solve block
T *y = new T[A.rows()];
T *x = new T[A.rows()];
Matrix<T, RO, Concrete> b(A.rows(), 1); // full of zeros
Matrix<T,RO,Concrete> bb;
for (uint k = 0; k < A.rows(); ++k) {
b[k] = (T) 1;
bb = row_interchange(b, perm_vec);
solve(L, U, bb, x, y);
b[k] = (T) 0;
for (uint l = 0; l < A.rows(); ++l)
Ainv(l,k) = x[l];
}
delete[] y;
delete[] x;
SCYTHE_VIEW_RETURN(T, RO, RS, Ainv)
}
template<typename T,
matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2,
matrix_order PO3, matrix_style PS3,
matrix_order PO4, matrix_style PS4>
Matrix<T,PO1,Concrete>
inv (const Matrix<T,PO1,PS1>& A,
const Matrix<T,PO2,PS2>& L, const Matrix<T,PO3,PS3>& U,
const Matrix<unsigned int,PO4,PS4>& perm_vec)
{
return inv<PO1,Concrete>(A, L, U, perm_vec);
}
/*!\brief Invert an arbitrary, non-singular, square matrix.
*
* This function returns the inverse of a non-singular square matrix,
* using lu_decomp() to do the necessary decomposition. This method
* is significantly slower than the inverse function for symmetric
* positive definite matrices, invpd().
*
* \param A The Matrix to be inverted.
*
* \see inv (const Matrix<T,PO1,PS1>&, const Matrix<T,PO2,PS2>&, const Matrix<T,PO3,PS3>&, const Matrix<unsigned int,PO4,PS4>&)
* \see invpd(const Matrix<T, PO, PS>&)
* \see invpd(const Matrix<T, PO1, PS1>&, const Matrix<T, PO2, PS2>&)
*
* \throw scythe_null_error(Level 1)
* \throw scythe_dimension_error (Level 1)
* \throw scythe_conformation_error (Level 1)
* \throw scythe_type_error (Level 2)
*/
template <matrix_order RO, matrix_style RS, typename T,
matrix_order PO, matrix_style PS>
Matrix<T, RO, RS>
inv (const Matrix<T, PO, PS>& A)
{
// Make a copy of A for the decomposition (do it with an explicit
// copy to a concrete case A is a view)
Matrix<T,RO,Concrete> AA = A;
// step 1 compute the LU factorization
Matrix<T, RO, Concrete> L, U;
Matrix<uint, RO, Concrete> perm_vec;
lu_decomp_alg(AA, L, U, perm_vec);
return inv<RO,RS>(A, L, U, perm_vec);
}
template <typename T, matrix_order O, matrix_style S>
Matrix<T, O, Concrete>
inv (const Matrix<T, O, S>& A)
{
return inv<O,Concrete>(A);
}
/* Interchanges the rows of A with those in vector p */
/*!\brief Interchange the rows of a Matrix according to a
* permutation vector.
*
* This function permutes the rows of Matrix \a A according to \a
* perm_vec. Each element i of perm_vec contains a row-number, r.
* For each row, i, in \a A, A[i] is interchanged with A[r].
*
* \param A The matrix to permute.
* \param p The column vector describing the permutations to perform
* on \a A.
*
* \see lu_decomp(Matrix<T,PO1,PS1>, Matrix<T,PO2,Concrete>&, Matrix<T,PO3,Concrete>&, Matrix<unsigned int, PO4, Concrete>&)
*
* \throw scythe_dimension_error (Level 1)
* \throw scythe_conformation_error (Level 1)
*/
template <matrix_order RO, matrix_style RS, typename T,
matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2>
Matrix<T,RO,RS>
row_interchange (Matrix<T,PO1,PS1> A,
const Matrix<unsigned int,PO2,PS2>& p)
{
SCYTHE_CHECK_10(! p.isColVector(), scythe_dimension_error,
"p not a column vector");
SCYTHE_CHECK_10(p.rows() + 1 != A.rows() && ! p.isScalar(),
scythe_conformation_error, "p must have one less row than A");
for (uint i = 0; i < A.rows() - 1; ++i) {
Matrix<T,PO1,View> vec1 = A(i, _);
Matrix<T,PO1,View> vec2 = A(p[i], _);
std::swap_ranges(vec1.begin_f(), vec1.end_f(), vec2.begin_f());
}
return A;
}
template <typename T, matrix_order PO1, matrix_style PS1,
matrix_order PO2, matrix_style PS2>
Matrix<T,PO1,Concrete>
row_interchange (const Matrix<T,PO1,PS1>& A,
const Matrix<unsigned int,PO2,PS2>& p)
{
return row_interchange<PO1,Concrete>(A, p);
}
/*! \brief Calculate the determinant of a square Matrix.
*
* This routine calculates the determinant of a square Matrix, using
* LU decomposition.
*
* \param A The Matrix to calculate the determinant of.
*
* \see lu_decomp(Matrix<T,PO1,PS1>, Matrix<T,PO2,Concrete>&, Matrix<T,PO3,Concrete>&, Matrix<unsigned int, PO4, Concrete>&)
*
* \throws scythe_dimension_error (Level 1)
* \throws scythe_null_error (Level 1)
*/
template <typename T, matrix_order PO, matrix_style PS>
T
det (const Matrix<T, PO, PS>& A)
{
SCYTHE_CHECK_10(! A.isSquare(), scythe_dimension_error,
"Matrix is not square")
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"Matrix is NULL")
// Make a copy of A for the decomposition (do it here instead of
// at parameter pass in case A is a view)
Matrix<T,PO,Concrete> AA = A;
// step 1 compute the LU factorization
Matrix<T, PO, Concrete> L, U;
Matrix<uint, PO, Concrete> perm_vec;
T sign = lu_decomp_alg(AA, L, U, perm_vec);
// step 2 calculate the product of diag(U) and sign
T det = (T) 1;
for (uint i = 0; i < AA.rows(); ++i)
det *= AA(i, i);
return sign * det;
}
#ifdef SCYTHE_LAPACK
template<>
Matrix<>
cholesky (const Matrix<>& A)
{
SCYTHE_DEBUG_MSG("Using lapack/blas for cholesky");
SCYTHE_CHECK_10(! A.isSquare(), scythe_dimension_error,
"Matrix not square");
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"Matrix is NULL");
// We have to do an explicit copy within the func to match the
// template declaration of the more general template.
Matrix<> AA = A;
// Get a pointer to the internal array and set up some vars
double* Aarray = AA.getArray(); // internal array pointer
int rows = (int) AA.rows(); // the dim of the matrix
int err = 0; // The output error condition
// Cholesky decomposition step
lapack::dpotrf_("L", &rows, Aarray, &rows, &err);
SCYTHE_CHECK_10(err > 0, scythe_type_error,
"Matrix is not positive definite")
SCYTHE_CHECK_10(err < 0, scythe_invalid_arg,
"The " << err << "th value of the matrix had an illegal value")
// Zero out upper triangle
for (uint j = 1; j < AA.cols(); ++j)
for (uint i = 0; i < j; ++i)
AA(i, j) = 0;
return AA;
}
template<>
Matrix<>
chol_solve (const Matrix<>& A, const Matrix<>& b, const Matrix<>& M)
{
SCYTHE_DEBUG_MSG("Using lapack/blas for chol_solve");
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"A is NULL")
SCYTHE_CHECK_10(! b.isColVector(), scythe_dimension_error,
"b must be a column vector");
SCYTHE_CHECK_10(A.rows() != b.rows(), scythe_conformation_error,
"A and b do not conform");
SCYTHE_CHECK_10(A.rows() != M.rows(), scythe_conformation_error,
"A and M do not conform");
SCYTHE_CHECK_10(! M.isSquare(), scythe_dimension_error,
"M must be square");
// The algorithm modifies b in place. We make a copy.
Matrix<> bb = b;
// Get array pointers and set up some vars
const double* Marray = M.getArray();
double* barray = bb.getArray();
int rows = (int) bb.rows();
int cols = (int) bb.cols(); // currently always one, but generalizable
int err = 0;
// Solve the system
lapack::dpotrs_("L", &rows, &cols, Marray, &rows, barray, &rows, &err);
SCYTHE_CHECK_10(err > 0, scythe_type_error,
"Matrix is not positive definite")
SCYTHE_CHECK_10(err < 0, scythe_invalid_arg,
"The " << err << "th value of the matrix had an illegal value")
return bb;
}
template<>
Matrix<>
chol_solve (const Matrix<>& A, const Matrix<>& b)
{
SCYTHE_DEBUG_MSG("Using lapack/blas for chol_solve");
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"A is NULL")
SCYTHE_CHECK_10(! b.isColVector(), scythe_dimension_error,
"b must be a column vector");
SCYTHE_CHECK_10(A.rows() != b.rows(), scythe_conformation_error,
"A and b do not conform");
// The algorithm modifies both A and b in place, so we make copies
Matrix<> AA =A;
Matrix<> bb = b;
// Get array pointers and set up some vars
double* Aarray = AA.getArray();
double* barray = bb.getArray();
int rows = (int) bb.rows();
int cols = (int) bb.cols(); // currently always one, but generalizable
int err = 0;
// Solve the system
lapack::dposv_("L", &rows, &cols, Aarray, &rows, barray, &rows, &err);
SCYTHE_CHECK_10(err > 0, scythe_type_error,
"Matrix is not positive definite")
SCYTHE_CHECK_10(err < 0, scythe_invalid_arg,
"The " << err << "th value of the matrix had an illegal value")
return bb;
}
template <matrix_order PO2, matrix_order PO3, matrix_order PO4>
inline double
lu_decomp_alg(Matrix<>& A, Matrix<double,PO2,Concrete>& L,
Matrix<double,PO3,Concrete>& U,
Matrix<unsigned int, PO4, Concrete>& perm_vec)
{
SCYTHE_DEBUG_MSG("Using lapack/blas for lu_decomp_alg");
SCYTHE_CHECK_10(A.isNull(), scythe_null_error, "A is NULL")
SCYTHE_CHECK_10 (! A.isSquare(), scythe_dimension_error,
"A is not square");
if (A.isRowVector()) {
L = Matrix<double,PO2,Concrete> (1, 1, true, 1); // all 1s
U = A;
perm_vec = Matrix<uint, PO4, Concrete>(1, 1); // all 0s
return 0.;
}
L = U = Matrix<double, PO2, Concrete>(A.rows(), A.cols(), false);
perm_vec = Matrix<uint, PO3, Concrete> (A.rows(), 1, false);
// Get a pointer to the internal array and set up some vars
double* Aarray = A.getArray(); // internal array pointer
int rows = (int) A.rows(); // the dim of the matrix
int* ipiv = (int*) perm_vec.getArray(); // Holds the lu decomp pivot array
int err = 0; // The output error condition
// Do the decomposition
lapack::dgetrf_(&rows, &rows, Aarray, &rows, ipiv, &err);
SCYTHE_CHECK_10(err > 0, scythe_type_error, "Matrix is singular");
SCYTHE_CHECK_10(err < 0, scythe_lapack_internal_error,
"The " << err << "th value of the matrix had an illegal value");
// Now fill in the L and U matrices.
L = A;
for (uint i = 0; i < A.rows(); ++i) {
for (uint j = i; j < A.rows(); ++j) {
U(i,j) = A(i,j);
L(i,j) = 0.;
L(i,i) = 1.;
}
}
// Change to scythe's rows-1 perm_vec format and c++ indexing
// XXX Cutting off the last pivot term may be buggy if it isn't
// always just pointing at itself
if (perm_vec(perm_vec.size() - 1) != perm_vec.size())
SCYTHE_THROW(scythe_unexpected_default_error,
"This is an unexpected error. Please notify the developers.")
perm_vec = perm_vec(0, 0, perm_vec.rows() - 2, 0) - 1;
// Finally, figure out the sign of perm_vec
if (sum(perm_vec > 0) % 2 == 0)
return 1;
return -1;
}
/*! \brief The result of a QR decomposition.
*
* Objects of this type contain three matrices, \a QR, \a tau, and
* \a pivot, representing the results of a QR decomposition of a
* \f$m \times n\f$ matrix. After decomposition, the upper triangle
* of \a QR contains the min(\f$m\f$, \f$n\f$) by \f$n\f$ upper
* trapezoidal matrix \f$R\f$, while \a tau and the elements of \a
* QR below the diagonal represent the orthogonal matrix \f$Q\f$ as
* a product of min(\f$m\f$, \f$n\f$) elementary reflectors. The
* vector \a pivot is a permutation vector containing information
* about the pivoting strategy used in the factorization.
*
* \a QR is \f$m \times n\f$, tau is a vector of dimension
* min(\f$m\f$, \f$n\f$), and pivot is a vector of dimension
* \f$n\f$.
*
* \see qr_decomp (const Matrix<>& A)
*/
struct QRdecomp {
Matrix<> QR;
Matrix<> tau;
Matrix<> pivot;
};
/*! \brief QR decomposition of a matrix.
*
* This function performs QR decomposition. That is, given a
* \f$m \times n \f$ matrix \a A, qr_decomp computes the QR factorization
* of \a A with column pivoting, such that \f$A \cdot P = Q \cdot
* R\f$. The resulting QRdecomp object contains three matrices, \a
* QR, \a tau, and \a pivot. The upper triangle of \a QR contains the
* min(\f$m\f$, \f$n\f$) by \f$n\f$ upper trapezoidal matrix
* \f$R\f$, while \a tau and the elements of \a QR below the
* diagonal represent the orthogonal matrix \f$Q\f$ as a product of
* min(\f$m\f$, \f$n\f$) elementary reflectors. The vector \a pivot
* is a permutation vector containing information about the pivoting
* strategy used in the factorization.
*
* \note This function requires BLAS/LAPACK functionality and is
* only available on machines that provide these libraries. Make
* sure you enable the SCYTHE_LAPACK preprocessor flag if you wish
* to use this function. Furthermore, note that this function takes
* and returns only column-major concrete matrices. Future versions
* of Scythe will provide a native C++ implementation of this
* function with support for general matrix templates.
*
* \param A A matrix to decompose.
*
* \see QRdecomp
* \see lu_decomp(Matrix<T,PO1,PS1>, Matrix<T,PO2,Concrete>&, Matrix<T,PO3,Concrete>&, Matrix<unsigned int, PO4, Concrete>&)
* \see cholesky (const Matrix<T, PO, PS>&)
* \see qr_solve (const Matrix<>& A, const Matrix<>& b, const QRdecomp& QR)
* \see qr_solve (const Matrix<>& A, const Matrix<>& b);
*
* \throw scythe_null_error (Level 1)
* \throw scythe_lapack_internal_error (Level 1)
*/
QRdecomp
qr_decomp (const Matrix<>& A)
{
SCYTHE_DEBUG_MSG("Using lapack/blas for qr_decomp");
SCYTHE_CHECK_10(A.isNull(), scythe_null_error, "A is NULL");
// Set up working variables
Matrix<> QR = A;
double* QRarray = QR.getArray(); // input/output array pointer
int rows = (int) QR.rows();
int cols = (int) QR.cols();
Matrix<unsigned int> pivot(cols, 1); // pivot vector
int* parray = (int*) pivot.getArray(); // pivot vector array pointer
Matrix<> tau = Matrix<>(rows < cols ? rows : cols, 1);
double* tarray = tau.getArray(); // tau output array pointer
double tmp, *work; // workspace vars
int lwork, info; // workspace size var and error info var
// Get workspace size
lwork = -1;
lapack::dgeqp3_(&rows, &cols, QRarray, &rows, parray, tarray, &tmp,
&lwork, &info);
SCYTHE_CHECK_10(info != 0, scythe_lapack_internal_error,
"Internal error in LAPACK routine dgeqp3");
lwork = (int) tmp;
work = new double[lwork];
// run the routine for real
lapack::dgeqp3_(&rows, &cols, QRarray, &rows, parray, tarray, work,
&lwork, &info);
SCYTHE_CHECK_10(info != 0, scythe_lapack_internal_error,
"Internal error in LAPACK routine dgeqp3");
delete[] work;
pivot -= 1;
QRdecomp result;
result.QR = QR;
result.tau = tau;
result.pivot = pivot;
return result;
}
/*! \brief Solve \f$Ax=b\f$ given a QR decomposition.
*
* This function solves the system of equations \f$Ax = b\f$ using
* the results of a QR decomposition. This function requires the
* actual QR decomposition to be performed ahead of time; by
* qr_decomp() for example.
*
* This function is intended for repeatedly solving systems of
* equations based on \a A. That is \a A stays constant while \a b
* varies.
*
* \note This function requires BLAS/LAPACK functionality and is
* only available on machines that provide these libraries. Make
* sure you enable the SCYTHE_LAPACK preprocessor flag if you wish
* to use this function. Furthermore, note that this function takes
* and returns only column-major concrete matrices. Future versions
* of Scythe will provide a native C++ implementation of this
* function with support for general matrix templates.
*
* \param A A Matrix to decompose.
* \param b A Matrix with as many rows as \a A.
* \param QR A QRdecomp object containing the result of the QR decomposition of \a A.
*
* \see QRdecomp
* \see qr_solve (const Matrix<>& A, const Matrix<>& b)
* \see qr_decomp (const Matrix<>& A)
* \see lu_solve (const Matrix<T,PO1,PS1>&, const Matrix<T,PO2,PS2>&, const Matrix<T,PO3,PS3>&, const Matrix<T,PO4,PS4>&, const Matrix<unsigned int, PO5, PS5>&)
* \see lu_solve (Matrix<T,PO1,PS1>, const Matrix<T,PO2,PS2>&)
* \see chol_solve(const Matrix<T,PO1,PS1> &, const Matrix<T,PO2,PS2> &)
* \see chol_solve(const Matrix<T,PO1,PS1> &, const Matrix<T,PO2,PS2> &, const Matrix<T,PO3,PS3> &)
*
* \throw scythe_null_error (Level 1)
* \throw scythe_conformation_error (Level 1)
* \throw scythe_type_error (Level 1)
* \throw scythe_lapack_internal_error (Level 1)
*/
inline Matrix<>
qr_solve(const Matrix<>& A, const Matrix<>& b, const QRdecomp& QR)
{
SCYTHE_DEBUG_MSG("Using lapack/blas for qr_solve");
SCYTHE_CHECK_10(A.isNull(), scythe_null_error, "A is NULL")
SCYTHE_CHECK_10(A.rows() != b.rows(), scythe_conformation_error,
"A and b do not conform");
SCYTHE_CHECK_10(A.rows() != QR.QR.rows() || A.cols() != QR.QR.cols(),
scythe_conformation_error, "A and QR do not conform");
int taudim = (int) (A.rows() < A.cols() ? A.rows() : A.cols());
SCYTHE_CHECK_10(QR.tau.size() != taudim, scythe_conformation_error,
"A and tau do not conform");
SCYTHE_CHECK_10(QR.pivot.size() != A.cols(), scythe_conformation_error,
"pivot vector is not the right length");
int rows = (int) QR.QR.rows();
int cols = (int) QR.QR.cols();
int nrhs = (int) b.cols();
int lwork, info;
double *work, tmp;
double* QRarray = QR.QR.getArray();
double* tarray = QR.tau.getArray();
Matrix<> bb = b;
double* barray = bb.getArray();
// Get workspace size
lwork = -1;
lapack::dormqr_("L", "T", &rows, &nrhs, &taudim, QRarray, &rows,
tarray, barray, &rows, &tmp, &lwork, &info);
SCYTHE_CHECK_10(info != 0, scythe_lapack_internal_error,
"Internal error in LAPACK routine dormqr");
// And now for real
lwork = (int) tmp;
work = new double[lwork];
lapack::dormqr_("L", "T", &rows, &nrhs, &taudim, QRarray, &rows,
tarray, barray, &rows, work, &lwork, &info);
SCYTHE_CHECK_10(info != 0, scythe_lapack_internal_error,
"Internal error in LAPACK routine dormqr");
lapack::dtrtrs_("U", "N", "N", &taudim, &nrhs, QRarray, &rows, barray,
&rows, &info);
SCYTHE_CHECK_10(info > 0, scythe_type_error, "Matrix is singular");
SCYTHE_CHECK_10(info < 0, scythe_lapack_internal_error,
"Internal error in LAPACK routine dtrtrs");
delete[] work;
Matrix<> result(A.cols(), b.cols(), false);
for (uint i = 0; i < QR.pivot.size(); ++i)
result(i, _) = bb(QR.pivot(i), _);
return result;
}
/*! \brief Solve \f$Ax=b\f$ using QR decomposition.
*
* This function solves the system of equations \f$Ax = b\f$ using
* QR decomposition. This function is intended for repeatedly
* solving systems of equations based on \a A. That is \a A stays
* constant while \a b varies.
*
* \note This function used BLAS/LAPACK support functionality and is
* only available on machines that provide these libraries. Make
* sure you enable the SCYTHE_LAPACK preprocessor flag if you wish
* to use this function. Furthermore, note that the function takes
* and returns only column-major concrete matrices. Future versions
* of Scythe will provide a native C++ implementation of this
* function with support for general matrix templates.
*
* \param A A Matrix to decompose.
* \param b A Matrix with as many rows as \a A.
*
* \see QRdecomp
* \see qr_solve (const Matrix<>& A, const Matrix<>& b, const QRdecomp& QR)
* \see qr_decomp (const Matrix<>& A)
* \see lu_solve (const Matrix<T,PO1,PS1>&, const Matrix<T,PO2,PS2>&, const Matrix<T,PO3,PS3>&, const Matrix<T,PO4,PS4>&, const Matrix<unsigned int, PO5, PS5>&)
* \see lu_solve (Matrix<T,PO1,PS1>, const Matrix<T,PO2,PS2>&)
* \see chol_solve(const Matrix<T,PO1,PS1> &, const Matrix<T,PO2,PS2> &)
* \see chol_solve(const Matrix<T,PO1,PS1> &, const Matrix<T,PO2,PS2> &, const Matrix<T,PO3,PS3> &)
*
* \throw scythe_null_error (Level 1)
* \throw scythe_conformation_error (Level 1)
* \throw scythe_type_error (Level 1)
* \throw scythe_lapack_internal_error (Level 1)
*/
inline Matrix<>
qr_solve (const Matrix<>& A, const Matrix<>& b)
{
SCYTHE_DEBUG_MSG("Using lapack/blas for qr_solve");
SCYTHE_CHECK_10(A.isNull(), scythe_null_error, "A is NULL")
SCYTHE_CHECK_10(A.rows() != b.rows(), scythe_conformation_error,
"A and b do not conform");
/* Do decomposition */
// Set up working variables
Matrix<> QR = A;
double* QRarray = QR.getArray(); // input/output array pointer
int rows = (int) QR.rows();
int cols = (int) QR.cols();
Matrix<unsigned int> pivot(cols, 1); // pivot vector
int* parray = (int*) pivot.getArray(); // pivot vector array pointer
Matrix<> tau = Matrix<>(rows < cols ? rows : cols, 1);
double* tarray = tau.getArray(); // tau output array pointer
double tmp, *work; // workspace vars
int lwork, info; // workspace size var and error info var
// Get workspace size
lwork = -1;
lapack::dgeqp3_(&rows, &cols, QRarray, &rows, parray, tarray, &tmp,
&lwork, &info);
SCYTHE_CHECK_10(info != 0, scythe_lapack_internal_error,
"Internal error in LAPACK routine dgeqp3");
lwork = (int) tmp;
work = new double[lwork];
// run the routine for real
lapack::dgeqp3_(&rows, &cols, QRarray, &rows, parray, tarray, work,
&lwork, &info);
SCYTHE_CHECK_10(info != 0, scythe_lapack_internal_error,
"Internal error in LAPACK routine dgeqp3");
delete[] work;
pivot -= 1;
/* Now solve the system */
// working vars
int nrhs = (int) b.cols();
Matrix<> bb = b;
double* barray = bb.getArray();
int taudim = (int) tau.size();
// Get workspace size
lwork = -1;
lapack::dormqr_("L", "T", &rows, &nrhs, &taudim, QRarray, &rows,
tarray, barray, &rows, &tmp, &lwork, &info);
SCYTHE_CHECK_10(info != 0, scythe_lapack_internal_error,
"Internal error in LAPACK routine dormqr");
// And now for real
lwork = (int) tmp;
work = new double[lwork];
lapack::dormqr_("L", "T", &rows, &nrhs, &taudim, QRarray, &rows,
tarray, barray, &rows, work, &lwork, &info);
SCYTHE_CHECK_10(info != 0, scythe_lapack_internal_error,
"Internal error in LAPACK routine dormqr");
lapack::dtrtrs_("U", "N", "N", &taudim, &nrhs, QRarray, &rows, barray,
&rows, &info);
SCYTHE_CHECK_10(info > 0, scythe_type_error, "Matrix is singular");
SCYTHE_CHECK_10(info < 0, scythe_lapack_internal_error,
"Internal error in LAPACK routine dtrtrs");
delete[] work;
Matrix<> result(A.cols(), b.cols(), false);
for (uint i = 0; i < pivot.size(); ++i)
result(i, _) = bb(pivot(i), _);
return result;
}
template<>
Matrix<>
invpd (const Matrix<>& A)
{
SCYTHE_DEBUG_MSG("Using lapack/blas for invpd");
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"A is NULL")
SCYTHE_CHECK_10 (! A.isSquare(), scythe_dimension_error,
"A is not square");
// We have to do an explicit copy within the func to match the
// template declaration of the more general template.
Matrix<> AA = A;
// Get a pointer to the internal array and set up some vars
double* Aarray = AA.getArray(); // internal array pointer
int rows = (int) AA.rows(); // the dim of the matrix
int err = 0; // The output error condition
// Cholesky decomposition step
lapack::dpotrf_("L", &rows, Aarray, &rows, &err);
SCYTHE_CHECK_10(err > 0, scythe_type_error,
"Matrix is not positive definite")
SCYTHE_CHECK_10(err < 0, scythe_invalid_arg,
"The " << err << "th value of the matrix had an illegal value")
// Inversion step
lapack::dpotri_("L", &rows, Aarray, &rows, &err);
SCYTHE_CHECK_10(err > 0, scythe_type_error,
"The (" << err << ", " << err << ") element of the matrix is zero"
<< " and the inverse could not be computed")
SCYTHE_CHECK_10(err < 0, scythe_invalid_arg,
"The " << err << "th value of the matrix had an illegal value")
lapack::make_symmetric(Aarray, rows);
return AA;
}
template<>
Matrix<>
invpd (const Matrix<>& A, const Matrix<>& M)
{
SCYTHE_DEBUG_MSG("Using lapack/blas for invpd");
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"A is NULL")
SCYTHE_CHECK_10 (! A.isSquare(), scythe_dimension_error,
"A is not square");
SCYTHE_CHECK_10(A.rows() != M.cols() || A.cols() != M.rows(),
scythe_conformation_error, "A and M do not conform");
// We have to do an explicit copy within the func to match the
// template declaration of the more general template.
Matrix<> MM = M;
// Get pointer and set up some vars
double* Marray = MM.getArray();
int rows = (int) MM.rows();
int err = 0;
// Inversion step
lapack::dpotri_("L", &rows, Marray, &rows, &err);
SCYTHE_CHECK_10(err > 0, scythe_type_error,
"The (" << err << ", " << err << ") element of the matrix is zero"
<< " and the inverse could not be computed")
SCYTHE_CHECK_10(err < 0, scythe_invalid_arg,
"The " << err << "th value of the matrix had an illegal value")
lapack::make_symmetric(Marray, rows);
return MM;
}
template <>
Matrix<>
inv(const Matrix<>& A)
{
SCYTHE_DEBUG_MSG("Using lapack/blas for inv");
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"A is NULL")
SCYTHE_CHECK_10 (! A.isSquare(), scythe_dimension_error,
"A is not square");
// We have to do an explicit copy within the func to match the
// template declaration of the more general template.
Matrix<> AA = A;
// Get a pointer to the internal array and set up some vars
double* Aarray = AA.getArray(); // internal array pointer
int rows = (int) AA.rows(); // the dim of the matrix
int* ipiv = new int[rows]; // Holds the lu decomp pivot array
int err = 0; // The output error condition
// LU decomposition step
lapack::dgetrf_(&rows, &rows, Aarray, &rows, ipiv, &err);
SCYTHE_CHECK_10(err > 0, scythe_type_error, "Matrix is singular");
SCYTHE_CHECK_10(err < 0, scythe_invalid_arg,
"The " << err << "th value of the matrix had an illegal value");
// Inversion step; first do a workspace query, then the actual
// inversion
double work_query = 0;
int work_size = -1;
lapack::dgetri_(&rows, Aarray, &rows, ipiv, &work_query,
&work_size, &err);
double* workspace = new double[(work_size = (int) work_query)];
lapack::dgetri_(&rows, Aarray, &rows, ipiv, workspace, &work_size,
&err);
delete[] ipiv;
delete[] workspace;
SCYTHE_CHECK_10(err > 0, scythe_type_error, "Matrix is singular");
SCYTHE_CHECK_10(err < 0, scythe_invalid_arg,
"Internal error in LAPACK routine dgetri");
return AA;
}
/*!\brief The result of a singular value decomposition.
*
* Objects of this type hold the results of a singular value
* decomposition (SVD) of an \f$m \times n\f$ matrix \f$A\f$, as
* returned by svd(). The SVD takes the form: \f$A = U
* \cdot \Sigma \cdot V'\f$. SVD objects contain \a d, which
* holds the singular values of \f$A\f$ (the diagonal of
* \f$\Sigma\f$) in descending order. Furthermore, depending on the
* options passed to svd(), they may hold some or all of the
* left singular vectors of \f$A\f$ in \a U and some or all of the
* right singular vectors of \f$A\f$ in \a Vt.
*
* \see svd(const Matrix<>& A, int nu, int nv);
*/
struct SVD {
Matrix<> d; // singular values
Matrix<> U; // left singular vectors
Matrix<> Vt; // transpose of right singular vectors
};
/*!\brief Calculates the singular value decomposition of a matrix,
* optionally computing the left and right singular vectors.
*
* This function returns the singular value decomposition (SVD) of a
* \f$m \times n\f$ matrix \a A, optionally computing the left and right
* singular vectors. It returns the singular values and vectors in
* a SVD object.
*
* \note This function requires BLAS/LAPACK functionality and is
* only available on machines that provide these libraries. Make
* sure you enable the SCYTHE_LAPACK preprocessor flag if you wish
* to use this function. Furthermore, note that this function takes
* and returns only column-major concrete matrices. Future versions
* of Scythe will provide a native C++ implementation of this
* function with support for general matrix templates.
*
* \param A The matrix to decompose.
* \param nu The number of left singular vectors to compute and return. Values less than zero are equivalent to min(\f$m\f$, \f$n\f$).
* \param nv The number of right singular vectors to compute and return. Values less than zero are equivalent to min(\f$m\f$, \f$n\f$).
*
* \throw scythe_null_error (Level 1)
* \throw scythe_convergence_error (Level 1)
* \throw scythe_lapack_internal_error (Level 1)
*
* \see SVD
* \see eigen(const Matrix<>& A, bool vectors)
*/
inline SVD
svd (const Matrix<>& A, int nu = -1, int nv = -1)
{
SCYTHE_DEBUG_MSG("Using lapack/blas for eigen");
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"Matrix is NULL");
char* jobz;
int m = (int) A.rows();
int n = (int) A.cols();
int mn = (int) std::min(A.rows(), A.cols());
Matrix<> U;
Matrix<> V;
if (nu < 0) nu = mn;
if (nv < 0) nv = mn;
if (nu <= mn && nv<= mn) {
jobz = "S";
U = Matrix<>(m, mn, false);
V = Matrix<>(mn, n, false);
} else if (nu == 0 && nv == 0) {
jobz = "N";
} else {
jobz = "A";
U = Matrix<>(m, m, false);
V = Matrix<>(n, n, false);
}
double* Uarray = U.getArray();
double* Varray = V.getArray();
int ldu = (int) U.rows();
int ldvt = (int) V.rows();
Matrix<> X = A;
double* Xarray = X.getArray();
Matrix<> d(mn, 1, false);
double* darray = d.getArray();
double tmp, *work;
int lwork, info;
int *iwork = new int[8 * mn];
// get optimal workspace
lwork = -1;
lapack::dgesdd_(jobz, &m, &n, Xarray, &m, darray, Uarray, &ldu,
Varray, &ldvt, &tmp, &lwork, iwork, &info);
SCYTHE_CHECK_10(info < 0, scythe_lapack_internal_error,
"Internal error in LAPACK routine dgessd");
SCYTHE_CHECK_10(info > 0, scythe_convergence_error, "Did not converge");
lwork = (int) tmp;
work = new double[lwork];
// Now for real
lapack::dgesdd_(jobz, &m, &n, Xarray, &m, darray, Uarray, &ldu,
Varray, &ldvt, work, &lwork, iwork, &info);
SCYTHE_CHECK_10(info < 0, scythe_lapack_internal_error,
"Internal error in LAPACK routine dgessd");
SCYTHE_CHECK_10(info > 0, scythe_convergence_error, "Did not converge");
delete[] work;
if (nu < mn && nu > 0)
U = U(0, 0, U.rows() - 1, (unsigned int) std::min(m, nu) - 1);
if (nv < mn && nv > 0)
V = V(0, 0, (unsigned int) std::min(n, nv) - 1, V.cols() - 1);
SVD result;
result.d = d;
result.U = U;
result.Vt = V;
return result;
}
/*!\brief The result of an eigenvalue/vector decomposition.
*
* Objects of this type hold the results of the eigen() function.
* That is the eigenvalues and, optionally, the eigenvectors of a
* symmetric matrix of order \f$n\f$. The eigenvalues are stored in
* ascending order in the member column vector \a values. The
* vectors are stored in the \f$n \times n\f$ matrix \a vectors.
*
* \see eigen(const Matrix<>& A, bool vectors)
*/
struct Eigen {
Matrix<> values;
Matrix<> vectors;
};
/*!\brief Calculates the eigenvalues and eigenvectors of a symmetric
* matrix.
*
* This function returns the eigenvalues and, optionally,
* eigenvectors of a symmetric matrix \a A of order \f$n\f$. It
* returns an Eigen object containing the vector of values, in
* ascending order, and, optionally, a matrix holding the vectors.
*
* \note This function requires BLAS/LAPACK functionality and is
* only available on machines that provide these libraries. Make
* sure you enable the SCYTHE_LAPACK preprocessor flag if you wish
* to use this function. Furthermore, note that this function takes
* and returns only column-major concrete matrices. Future versions
* of Scythe will provide a native C++ implementation of this
* function with support for general matrix templates.
*
* \param A The Matrix to be decomposed.
* \param vectors This boolean value indicates whether or not to
* return eigenvectors in addition to eigenvalues. It is set to true
* by default.
*
* \throw scythe_null_error (Level 1)
* \throw scythe_dimension_error (Level 1)
* \throw scythe_lapack_internal_error (Level 1)
*
* \see Eigen
* \see svd(const Matrix<>& A, int nu, int nv);
*/
inline Eigen
eigen (const Matrix<>& A, bool vectors=true)
{
SCYTHE_DEBUG_MSG("Using lapack/blas for eigen");
SCYTHE_CHECK_10(! A.isSquare(), scythe_dimension_error,
"Matrix not square");
SCYTHE_CHECK_10(A.isNull(), scythe_null_error,
"Matrix is NULL");
// Should be symmetric but rounding errors make checking for this
// difficult.
// Make a copy of A
Matrix<> AA = A;
// Get a point to the internal array and set up some vars
double* Aarray = AA.getArray(); // internal array points
int order = (int) AA.rows(); // input matrix is order x order
double dignored = 0; // we don't use this option
int iignored = 0; // or this one
double abstol = 0.0; // tolerance (default)
int m; // output value
Matrix<> result; // result matrix
char getvecs[1]; // are we getting eigenvectors?
if (vectors) {
getvecs[0] = 'V';
result = Matrix<>(order, order + 1, false);
} else {
result = Matrix<>(order, 1, false);
getvecs[0] = 'N';
}
double* eigenvalues = result.getArray(); // pointer to result array
int* isuppz = new int[2 * order]; // indices of nonzero eigvecs
double tmp; // inital temporary value for getting work-space info
int lwork, liwork, *iwork, itmp; // stuff for workspace
double *work; // and more stuff for workspace
int info = 0; // error code holder
// get optimal size for work arrays
lwork = -1;
liwork = -1;
lapack::dsyevr_(getvecs, "A", "L", &order, Aarray, &order, &dignored,
&dignored, &iignored, &iignored, &abstol, &m, eigenvalues,
eigenvalues + order, &order, isuppz, &tmp, &lwork, &itmp,
&liwork, &info);
SCYTHE_CHECK_10(info != 0, scythe_lapack_internal_error,
"Internal error in LAPACK routine dsyevr");
lwork = (int) tmp;
liwork = itmp;
work = new double[lwork];
iwork = new int[liwork];
// do the actual operation
lapack::dsyevr_(getvecs, "A", "L", &order, Aarray, &order, &dignored,
&dignored, &iignored, &iignored, &abstol, &m, eigenvalues,
eigenvalues + order, &order, isuppz, work, &lwork, iwork,
&liwork, &info);
SCYTHE_CHECK_10(info != 0, scythe_lapack_internal_error,
"Internal error in LAPACK routine dsyevr");
delete[] isuppz;
delete[] work;
delete[] iwork;
Eigen resobj;
if (vectors) {
resobj.values = result(_, 0);
resobj.vectors = result(0, 1, result.rows() -1, result.cols() - 1);
} else {
resobj.values = result;
}
return resobj;
}
#endif
} // end namespace scythe
#endif /* SCYTHE_IDE_H */
|