This file is indexed.

/usr/include/scythestat/optimize.h is in libscythestat-dev 1.0.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
/* 
 * Scythe Statistical Library Copyright (C) 2000-2002 Andrew D. Martin
 * and Kevin M. Quinn; 2002-present Andrew D. Martin, Kevin M. Quinn,
 * and Daniel Pemstein.  All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify under the terms of the GNU General Public License as
 * published by Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.  See the text files
 * COPYING and LICENSE, distributed with this source code, for further
 * information.
 * --------------------------------------------------------------------
 *  scythestat/optimize.h
 *
 */

/*!
 * \file optimize.h
 * \brief Definitions of functions for doing numerical optimization
 * and related operations.
 *
 * This file contains a number of functions that are useful for
 * numerical optimization and maximum likelihood estimation.  In
 * addition, it contains some basic facilities for evaluating definite
 * integrals.
 *
 * As is the case across Scythe, we provide both general and default
 * template definitions for the functions in this file that return
 * Matrix objects.  The general definitions allow the user to
 * customize the matrix_order and matrix_style of the returned Matrix,
 * while the default versions return concrete matrices of the same
 * matrix_order as the first (or only) Matrix argument to the
 * function.  In cases where we supply these two types of definitions,
 * we explicitly document only the general version, although the
 * default definition will typically appear in the function list
 * below.
 *
 * \note
 * Doxygen has some difficulty dealing with overloaded templates.
 * Under certain circumstances it does not correctly process the
 * definitions of default templates.  In these cases, the definition
 * for the default template will not even appear in the function list.
 * We provide default templates for all of the Matrix-returning
 * functions in this file.
 *
 */

#ifndef SCYTHE_OPTIMIZE_H
#define SCYTHE_OPTIMIZE_H

#ifdef SCYTHE_COMPILE_DIRECT
#include "matrix.h"
#include "algorithm.h"
#include "error.h"
#include "rng.h"
#include "distributions.h"
#include "la.h"
#include "ide.h"
#include "smath.h"
#include "stat.h"
#else
#include "scythestat/matrix.h"
#include "scythestat/algorithm.h"
#include "scythestat/error.h"
#include "scythestat/rng.h"
#include "scythestat/distributions.h"
#include "scythestat/la.h"
#include "scythestat/ide.h"
#include "scythestat/smath.h"
#include "scythestat/stat.h"
#endif

/* We want to use an anonymous namespace to make the following consts
 * and functions local to this file, but mingw doesn't play nice with
 * anonymous namespaces so we do things differently when using the
 * cross-compiler.
 */
#ifdef __MINGW32__
#define SCYTHE_MINGW32_STATIC static
#else
#define SCYTHE_MINGW32_STATIC
#endif

namespace scythe {
#ifndef __MINGW32__
  namespace {
#endif

    /* Functions (private to this file) that do very little... */
    template <typename T, matrix_order O, matrix_style S>
    SCYTHE_MINGW32_STATIC T donothing (const Matrix<T,O,S>& x)
    {
      return (T) 0.0;
    }

    template <typename T>
    SCYTHE_MINGW32_STATIC T donothing (T& x)
    {
      return (T) 0.0;
    }
#ifndef __MINGW32__
  }
#endif


  /* Return the machine epsilon 
   * Notes: Algorithm taken from Sedgewick, Robert. 1992. Algorithms
   * in C++. Addison Wesley. pg. 561
   */
   /*! \brief Compute the machine epsilon.
    *
    * The epsilon function returns the machine epsilon: the smallest
    * number that, when summed with 1, produces a value greater than
    * one.
    */
  template <typename T>
  T
  epsilon()
  {
    T eps, del, neweps;
    del    = (T) 0.5;
    eps    = (T) 0.0;
    neweps = (T) 1.0;
  
    while ( del > 0 ) {
      if ( 1 + neweps > 1 ) {  /* Then the value might be too large */
        eps = neweps;    /* ...save the current value... */
        neweps -= del;    /* ...and decrement a bit */
      } else {      /* Then the value is too small */
        neweps += del;    /* ...so increment it */
      }
      del *= 0.5;      /* Reduce the adjustment by half */
    }

    return eps;
  }
  
   /*! \brief Calculate the definite integral of a function from a to b.
    *
    * This function calculates the definite integral of a univariate
    * function on the interval \f$[a,b]\f$.
    *
    * \param fun The function (or functor) whose definite integral is
    * to be calculated.  This function should both take and return a
    * single argument of type T.
    * \param a The starting value of the interval.
    * \param b The ending value of the interval.
    * \param N The number of subintervals to calculate.  Increasing
    * this number will improve the accuracy of the estimate but will
    * also increase run-time.
    *
    * \throw scythe_invalid_arg (Level 1)
    *
    * \see adaptsimp(FUNCTOR fun, T a, T b, unsigned int& N, double tol = 1e-5)
    * \note
    * Users will typically wish to implement \a fun in terms of a
    * functor.  Using a functor provides a generic way in which to
    * evaluate functions with more than one parameter.  Furthermore,
    * although one can pass a function pointer to this routine,
    * the compiler cannot inline and fully optimize code
    * referenced by function pointers.
    */
  template <typename T, typename FUNCTOR>
  T  intsimp (FUNCTOR fun, T a, T b, unsigned int N)
  {
    SCYTHE_CHECK_10(a > b, scythe_invalid_arg,
        "Lower limit larger than upper");
    
    T I = (T) 0;
    T w = (b - a) / N;
    for (unsigned int i = 1; i <= N; ++i)
      I += w * (fun(a +(i - 1) *w) + 4 * fun(a - w / 2 + i * w) +
          fun(a + i * w)) / 6;
   
    return I;
  }
  
   /*! \brief Calculate the definite integral of a function from a to b.
    *
    * This function calculates the definite integral of a univariate
    * function on the interval \f$[a,b]\f$.
    *
    * \param fun The function (or functor) whose definite integral is 
    * to be calculated.  This function should both take and return a
    * single argument of type T.
    * \param a The starting value of the interval.
    * \param b The ending value of the interval.
    * \param N The number of subintervals to calculate.  Increasing
    * this number will improve the accuracy of the estimate but will
    * also increase run-time.
    * \param tol The accuracy required.  Both accuracy and run-time
    * decrease as this number increases.
    *
    * \throw scythe_invalid_arg (Level 1)
    *
    * \see intsimp(FUNCTOR fun, T a, T b, unsigned int& N)
    *
    * \note
    * Users will typically wish to implement \a fun in terms of a
    * functor.  Using a functor provides a generic way in which to
    * evaluate functions with more than one parameter.  Furthermore,
    * although one can pass a function pointer to this routine,
    * the compiler cannot inline and fully optimize code
    * referenced by function pointers.
    */
  template <typename T, typename FUNCTOR>
  T adaptsimp(FUNCTOR fun, T a, T b, unsigned int N, double tol = 1e-5)
  {
    SCYTHE_CHECK_10(a > b, scythe_invalid_arg,
        "Lower limit larger than upper");

    T I = intsimp(fun, a, b, N);
    if (std::fabs(I - intsimp(fun, a, b, N / 2)) > tol)
      return adaptsimp(fun, a, (a + b) / 2, N, tol)
        + adaptsimp(fun, (a + b) / 2, b, N, tol);

    return I;
  }

   /*! \brief Calculate gradient of a function using a forward
    * difference formula.
    *
    * This function numerically calculates the gradient of a
    * vector-valued function at \a theta using a forward difference
    * formula.
    *
    * \param fun The function to calculate the gradient of.  This
    * function should both take and return a single Matrix (vector) of 
    * type T.
    * \param theta The column vector of values at which to calculate 
    * the gradient of the function.
    *
    * \see gradfdifls(FUNCTOR fun, T alpha, const Matrix<T,PO1,PS1>& theta, const Matrix<T,PO2,PS2>& p)
    * \see jacfdif(FUNCTOR fun, const Matrix<T,PO,PS>& theta)
    * \see hesscdif(FUNCTOR fun, const Matrix<T,PO,PS>& theta)
    *
    * \throw scythe_dimension_error (Level 1)
    *
    * \note
    * Users will typically wish to implement \a fun in terms of a
    * functor.  Using a functor provides a generic way in which to
    * evaluate functions with more than one parameter.  Furthermore,
    * although one can pass a function pointer to this routine,
    * the compiler cannot inline and fully optimize code
    * referenced by function pointers.
    */
  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO, matrix_style PS, typename FUNCTOR>
  Matrix<T, RO, RS>
  gradfdif (FUNCTOR fun, const Matrix<T,PO,PS>& theta)
      
  {
    SCYTHE_CHECK_10(! theta.isColVector(), scythe_dimension_error,
        "Theta not column vector");

    unsigned int k = theta.size();
    T h = std::sqrt(epsilon<T>());
    h = std::sqrt(h);

    Matrix<T,RO,RS> grad(k, 1);
    Matrix<T,RO> e;
    Matrix<T,RO> temp;
    for (unsigned int i = 0; i < k; ++i) {
      e = Matrix<T,RO>(k, 1);
      e[i] = h;
      temp = theta + e;
      donothing(temp); // XXX I don't understand this
      e = temp - theta;
      grad[i] = (fun(theta + e) - fun(theta)) / e[i];
    }

    return grad;
  }

  // Default template version
  template <typename T, matrix_order O, matrix_style S, 
            typename FUNCTOR>
  Matrix<T, O, Concrete>
  gradfdif (FUNCTOR fun, const Matrix<T,O,S>& theta)
  {
    return gradfdif<O,Concrete>(fun, theta);
  }

   /*! \brief Calculate the first derivative of the function using
    * a forward difference formula.
    *
    * This function numerically calculates the first derivative of a
    * function with respect to \a alpha at \f$theta + alpha \cdot p\f$
    * using a forward difference formula.  This function is primarily
    * useful for linesearches.
    *
    * \param fun The function to calculate the first derivative of.
    * This function should take a single Matrix<T> argument and return
    * a value of type T.
    * \param alpha Double the step length.
    * \param theta A Matrix (vector) of parameter values at which to
    * calculate the gradient.
    * \param p A direction vector.
    *
    * \see gradfdif(FUNCTOR fun, const Matrix<T,PO,PS>& theta)
    * \see jacfdif(FUNCTOR fun, const Matrix<T,PO,PS>& theta)
    * \see hesscdif(FUNCTOR fun, const Matrix<T,PO,PS>& theta)
    *
    * \throw scythe_dimension_error (Level 1)
    *
    * \note
    * Users will typically wish to implement \a fun in terms of a
    * functor.  Using a functor provides a generic way in which to
    * evaluate functions with more than one parameter.  Furthermore,
    * although one can pass a function pointer to this routine,
    * the compiler cannot inline and fully optimize code
    * referenced by function pointers.
    */
  template <typename T, matrix_order PO1, matrix_style PS1,
            matrix_order PO2, matrix_style PS2, typename FUNCTOR>
  T
  gradfdifls (FUNCTOR fun, T alpha, const Matrix<T,PO1,PS1>& theta, 
              const Matrix<T,PO2,PS2>& p)

  {
    SCYTHE_CHECK_10(! theta.isColVector(), scythe_dimension_error,
        "Theta not column vector");
    SCYTHE_CHECK_10(! p.isColVector(), scythe_dimension_error,
        "p not column vector");

    unsigned int k = theta.size();
    T h = std::sqrt(epsilon<T>()); 
    h = std::sqrt(h);
    //T h = std::sqrt(2.2e-16);

    T deriv;

    for (unsigned int i = 0; i < k; ++i) {
      T temp = alpha + h;
      donothing(temp);
      T e = temp - alpha;
      deriv = (fun(theta + (alpha + e) * p) - fun(theta + alpha * p)) 
              / e;
    }
    
    return deriv;
  }

   /*! \brief Calculate the Jacobian of a function using a forward
    * difference formula.
    *
    * This function numerically calculates the Jacobian of a
    * vector-valued function using a forward difference formula.
    *
    * \param fun The function to calculate the Jacobian of.  This
    * function should both take and return a Matrix (vector) of type
    * T.
    * \param theta The column vector of parameter values at which to 
    * take the Jacobian of \a fun.
    *
    * \see gradfdif(FUNCTOR fun, const Matrix<T,PO,PS>& theta)
    * \see gradfdifls(FUNCTOR fun, T alpha, const Matrix<T,PO1,PS1>& theta, const Matrix<T,PO2,PS2>& p)
    * \see hesscdif(FUNCTOR fun, const Matrix<T,PO,PS>& theta)
    *
    * \throw scythe_dimension_error (Level 1)
    *
    * \note
    * Users will typically wish to implement \a fun in terms of a
    * functor.  Using a functor provides a generic way in which to
    * evaluate functions with more than one parameter.  Furthermore,
    * although one can pass a function pointer to this routine,
    * the compiler cannot inline and fully optimize code
    * referenced by function pointers.
    */
  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO, matrix_style PS, typename FUNCTOR>
  Matrix<T,RO,RS>
  jacfdif (FUNCTOR fun, const Matrix<T,PO,PS>& theta)
  {
    SCYTHE_CHECK_10(! theta.isColVector(), scythe_dimension_error,
        "Theta not column vector");

    Matrix<T,RO> fval = fun(theta);
    unsigned int k = theta.rows();
    unsigned int n = fval.rows();

    T h = std::sqrt(epsilon<T>()); //2.2e-16
    h = std::sqrt(h);

    Matrix<T,RO,RS> J(n,k);
    Matrix<T,RO> e;
    Matrix<T,RO> temp;
    Matrix<T,RO> fthetae;
    Matrix<T,RO> ftheta;
    
    for (int i = 0; i < k; ++i) {
      e = Matrix<T,RO>(k,1);
      e[i] = h;
      temp = theta + e;
      donothing(temp); /// XXX ??
      e = temp - theta;
      fthetae = fun(theta + e);
      ftheta = fun(theta);
      for (unsigned int j = 0; j < n; ++j) {
        J(j,i) = (fthetae[j] - ftheta[j]) / e[i];
      }
    }
   
    return J;
  }

  // default template
  template <typename T, matrix_order PO, matrix_style PS,
            typename FUNCTOR>
  Matrix<T,PO,PS>
  jacfdif (FUNCTOR fun, const Matrix<T,PO,PS>& theta)
  {
    return jacfdif<PO,Concrete>(fun, theta);
  }


   /*! \brief Calculate the Hessian of a function using a central
    * difference formula.
    *
    * This function numerically calculates the Hessian of a
    * vector-valued function using a central difference formula.
    *
    * \param fun The function to calculate the Hessian of.  This
    * function should take a Matrix (vector) of type T and return a
    * single value of type T.
    * \param theta The column vector of parameter values at which to 
    * calculate the Hessian.
    *
    * \see gradfdif(FUNCTOR fun, const Matrix<T,PO,PS>& theta)
    * \see gradfdifls(FUNCTOR fun, T alpha, const Matrix<T,PO1,PS1>& theta, const Matrix<T,PO2,PS2>& p)
    * \see jacfdif(FUNCTOR fun, const Matrix<T,PO,PS>& theta)
    *
    * \throw scythe_dimension_error
    *
    * \note
    * Users will typically wish to implement \a fun in terms of a
    * functor.  Using a functor provides a generic way in which to
    * evaluate functions with more than one parameter.  Furthermore,
    * although one can pass a function pointer to this routine,
    * the compiler cannot inline and fully optimize code
    * referenced by function pointers.
    */
  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO, matrix_style PS, typename FUNCTOR>
  Matrix<T, RO, RS>
  hesscdif (FUNCTOR fun, const Matrix<T,PO,PS>& theta)
  {
    SCYTHE_CHECK_10(! theta.isColVector(), scythe_dimension_error,
        "Theta not column vector");
    
    T fval = fun(theta);

    //std::cout << std::endl;
    //std::cout << "hesscdif theta = " << theta << "\n";
    //std::cout << "hesscdif fun(theta) = " << fval << std::endl;

    unsigned int k = theta.rows();

    // stepsize CAREFUL -- THIS IS MACHINE SPECIFIC !!!!
    T h2 = std::sqrt(epsilon<T>());
    //T h2 = (T) 1e-10;
    T h = std::sqrt(h2); 

    Matrix<T, RO, RS> H(k,k);

    //std::cout << "h2 = " << h2 << "  h = " << h << std::endl;

    Matrix<T,RO> ei;
    Matrix<T,RO> ej;
    Matrix<T,RO> temp;

    for (unsigned int i = 0; i < k; ++i) {
      ei = Matrix<T,RO>(k, 1);
      ei[i] = h;
      temp = theta + ei;
      donothing(temp); // XXX Again, I'm baffled
      ei = temp - theta;
      for (unsigned int j = 0; j < k; ++j){
        ej = Matrix<T,RO>(k,1);
        ej[j] = h;
        temp = theta + ej;
        donothing(temp); // XXX and again
        ej = temp - theta;
        
        if (i == j) {
          H(i,i) = ( -fun(theta + 2.0 * ei) + 16.0 *
              fun(theta + ei) - 30.0 * fval + 16.0 *
              fun(theta - ei) -
              fun(theta - 2.0 * ei)) / (12.0 * h2);
        } else {
          H(i,j) = ( fun(theta + ei + ej) - fun(theta + ei - ej)
              - fun(theta - ei + ej) + fun(theta - ei - ej))
            / (4.0 * h2);
        }
      }
    }
       
    //std::cout << "end of hesscdif, H = " << H << "\n";
    return H;
  }

  // default template
  template <typename T, matrix_order PO, matrix_style PS,
            typename FUNCTOR>
  Matrix<T,PO,PS>
  hesscdif (FUNCTOR fun, const Matrix<T,PO,PS>& theta)
  {
    return hesscdif<PO,Concrete>(fun, theta);
  }

   /*! \brief Find the step length that minimizes an implied 1-dimensional function.
    *
    * This function performs a line search to find the step length
    * that approximately minimizes an implied one dimensional
    * function.
    *
    * \param fun The function to minimize.  This function should take
    * one Matrix (vector) argument of type T and return a single value
    * of type T.
    * \param theta A column vector of parameter values that anchor the
    * 1-dimensional function.
    * \param p A direction vector that creates the 1-dimensional
    * function.
    *
    * \see linesearch2(FUNCTOR fun, const Matrix<T,PO1,PS1>& theta, const Matrix<T,PO2,PS2>& p, rng<RNGTYPE>& runif)
    * \see zoom(FUNCTOR fun, T alpha_lo, T alpha_hi, const Matrix<T,PO1,PS1>& theta, const Matrix<T,PO2,PS2>& p)
    * \see BFGS(FUNCTOR fun, const Matrix<T,PO,PS>& theta, rng<RNGTYPE>& runif, unsigned int maxit, T tolerance, bool trace = false)
    *
    * \throw scythe_dimension_error (Level 1)
    *
    * \note
    * Users will typically wish to implement \a fun in terms of a
    * functor.  Using a functor provides a generic way in which to
    * evaluate functions with more than one parameter.  Furthermore,
    * although one can pass a function pointer to this routine,
    * the compiler cannot inline and fully optimize code
    * referenced by function pointers.
    */
  template <typename T, matrix_order PO1, matrix_style PS1,
            matrix_order PO2, matrix_style PS2, typename FUNCTOR>
  T linesearch1 (FUNCTOR fun, const Matrix<T,PO1,PS1>& theta,
                 const Matrix<T,PO2,PS2>& p)
  {
    SCYTHE_CHECK_10(! theta.isColVector(), scythe_dimension_error,
        "Theta not column vector");
    SCYTHE_CHECK_10(! p.isColVector(), scythe_dimension_error,
        "p not column vector");

    T alpha_bar = (T) 1.0;
    T rho = (T) 0.9;
    T c   = (T) 0.5;
    T alpha = alpha_bar;
    Matrix<T,PO1> fgrad = gradfdif(fun, theta);

    while (fun(theta + alpha * p) > 
           (fun(theta) + c * alpha * t(fgrad) * p)[0]) {
      alpha = rho * alpha;
    }

    return alpha;
  }

   /*! \brief Find the step length that minimizes an implied 1-dimensional function.
    *
    * This function performs a line search to find the step length
    * that approximately minimizes an implied one dimensional
    * function.
    *
    * \param fun The function to minimize.  This function should take
    * one Matrix (vector) argument of type T and return a single value
    * of type T.
    * \param theta A column vector of parameter values that anchor the
    * 1-dimensional function.
    * \param p A direction vector that creates the 1-dimensional
    * function.
    * \param runif A random uniform number generator function object
    * (an object that returns a random uniform variate on (0,1) when
    * its () operator is invoked).
    *
    * \see linesearch1(FUNCTOR fun, const Matrix<T,PO1,PS1>& theta, const Matrix<T,PO2,PS2>& p)
    * \see zoom(FUNCTOR fun, T alpha_lo, T alpha_hi, const Matrix<T,PO1,PS1>& theta, const Matrix<T,PO2,PS2>& p)
    * \see BFGS(FUNCTOR fun, const Matrix<T,PO,PS>& theta, rng<RNGTYPE>& runif, unsigned int maxit, T tolerance, bool trace = false)
    *
    * \throw scythe_dimension_error (Level 1)
    *
    * \note
    * Users will typically wish to implement \a fun in terms of a
    * functor.  Using a functor provides a generic way in which to
    * evaluate functions with more than one parameter.  Furthermore,
    * although one can pass a function pointer to this routine,
    * the compiler cannot inline and fully optimize code
    * referenced by function pointers.
    */
  template <typename T, matrix_order PO1, matrix_style PS1,
            matrix_order PO2, matrix_style PS2, typename FUNCTOR,
            typename RNGTYPE>
  T linesearch2 (FUNCTOR fun, const Matrix<T,PO1,PS1>& theta,
                 const Matrix<T,PO2,PS2>& p, rng<RNGTYPE>& runif)
  {
    SCYTHE_CHECK_10(! theta.isColVector(), scythe_dimension_error,
        "Theta not column vector");
    SCYTHE_CHECK_10(! p.isColVector(), scythe_dimension_error,
        "p not column vector");

    T alpha_last = (T) 0.0;
    T alpha_cur = (T) 1.0;
    T alpha_max = (T) 10.0;
    T c1 = (T) 1e-4;
    T c2 = (T) 0.5;
    unsigned int max_iter = 50;
    T fgradalpha0 = gradfdifls(fun, (T) 0, theta, p);

    for (unsigned int i = 0; i < max_iter; ++i) {
      T phi_cur = fun(theta + alpha_cur * p);
      T phi_last = fun(theta + alpha_last * p);
     
      if ((phi_cur > (fun(theta) + c1 * alpha_cur * fgradalpha0))
          || ((phi_cur >= phi_last) && (i > 0))) {
        T alphastar = zoom(fun, alpha_last, alpha_cur, theta, p);
        return alphastar;
      }

      T fgradalpha_cur = gradfdifls(fun, alpha_cur, theta, p);
      if (std::fabs(fgradalpha_cur) <= -1 * c2 * fgradalpha0)
        return alpha_cur;

      if ( fgradalpha_cur >= (T) 0.0) {
        T alphastar = zoom(fun, alpha_cur, alpha_last, theta, p);
        return alphastar;
      }
      
      alpha_last = alpha_cur;
      // runif stuff below is probably not correc KQ 12/08/2006
      // I think it should work now DBP 01/02/2007
      alpha_cur = runif() * (alpha_max - alpha_cur) + alpha_cur;
    }

    return 0.001;
  }

   /*! \brief Find minimum of a function once bracketed.
    *
    * This function finds the minimum of a function, once bracketed.
    *
    * \param fun The function to minimize.  This function should take
    * one Matrix (vector) argument of type T and return a single value
    * of type T.
    * \param alpha_lo The lower bracket.
    * \param alpha_hi The upper bracket.
    * \param theta A column vector of parameter values that anchor the
    * 1-dimensional function.
    * \param p A direction vector that creates the 1-dimensional
    *
    * \see linesearch1(FUNCTOR fun, const Matrix<T,PO1,PS1>& theta, const Matrix<T,PO2,PS2>& p)
    * \see linesearch2(FUNCTOR fun, const Matrix<T,PO1,PS1>& theta, const Matrix<T,PO2,PS2>& p, rng<RNGTYPE>& runif)
    * \see BFGS(FUNCTOR fun, const Matrix<T,PO,PS>& theta, rng<RNGTYPE>& runif, unsigned int maxit, T tolerance, bool trace = false)
    *
    * \throw scythe_dimension_error (Level 1)
    *
    * \note
    * Users will typically wish to implement \a fun in terms of a
    * functor.  Using a functor provides a generic way in which to
    * evaluate functions with more than one parameter.  Furthermore,
    * although one can pass a function pointer to this routine,
    * the compiler cannot inline and fully optimize code
    * referenced by function pointers.
    * 
    */
  template <typename T, matrix_order PO1, matrix_style PS1,
            matrix_order PO2, matrix_style PS2, typename FUNCTOR>
  T zoom (FUNCTOR fun, T alpha_lo, T alpha_hi,
          const Matrix<T,PO1,PS1>& theta, const Matrix<T,PO2,PS2>& p)
  {
    SCYTHE_CHECK_10(! theta.isColVector(), scythe_dimension_error,
        "Theta not column vector");
    SCYTHE_CHECK_10(! p.isColVector(), scythe_dimension_error,
        "p not column vector");

    T alpha_j = (alpha_lo + alpha_hi) / 2.0;
    T phi_0 = fun(theta);
    T c1 = (T) 1e-4;
    T c2 = (T) 0.5;
    T fgrad0 = gradfdifls(fun, (T) 0, theta, p);

    unsigned int count = 0;
    unsigned int maxit = 20;
    while(count < maxit) {
      T phi_j = fun(theta + alpha_j * p);
      T phi_lo = fun(theta + alpha_lo * p);
     
      if ((phi_j > (phi_0 + c1 * alpha_j * fgrad0))
          || (phi_j >= phi_lo)){
        alpha_hi = alpha_j;
      } else {
        T fgradj = gradfdifls(fun, alpha_j, theta, p);
        if (std::fabs(fgradj) <= -1 * c2 * fgrad0){ 
          return alpha_j;
        }
        if ( fgradj * (alpha_hi - alpha_lo) >= 0){
          alpha_hi = alpha_lo;
        }
        alpha_lo = alpha_j;
      }
      ++count;
    }
   
    return alpha_j;
  }


   /*! \brief Find function minimum using the BFGS algorithm.
    *
    * Numerically find the minimum of a function using the BFGS
    * algorithm.
    *
    * \param fun The function to minimize.  This function should take
    * one Matrix (vector) argument of type T and return a single value
    * of type T.
    * \param theta A column vector of parameter values that anchor the
    * 1-dimensional function.
    * \param runif A random uniform number generator function object
    * (an object that returns a random uniform variate on (0,1) when
    * its () operator is invoked).
    * \param maxit The maximum number of iterations.
    * \param tolerance The convergence tolerance.
    * \param trace Boolean value determining whether BFGS should print 
    *              to stdout (defaults to false).
    *
    * \see linesearch1(FUNCTOR fun, const Matrix<T,PO1,PS1>& theta, const Matrix<T,PO2,PS2>& p)
    * \see linesearch2(FUNCTOR fun, const Matrix<T,PO1,PS1>& theta, const Matrix<T,PO2,PS2>& p, rng<RNGTYPE>& runif)
    * \see zoom(FUNCTOR fun, T alpha_lo, T alpha_hi, const Matrix<T,PO1,PS1>& theta, const Matrix<T,PO2,PS2>& p)
    *
    * \throw scythe_dimension_error (Level 1)
    * \throw scythe_convergence_error (Level 0)
    *
    * \note
    * Users will typically wish to implement \a fun in terms of a
    * functor.  Using a functor provides a generic way in which to
    * evaluate functions with more than one parameter.  Furthermore,
    * although one can pass a function pointer to this routine,
    * the compiler cannot inline and fully optimize code
    * referenced by function pointers.
    */
  // there were 2 versions of linesearch1-- the latter was what we
  // had been calling linesearch2
  template <matrix_order RO, matrix_style RS, typename T, 
            matrix_order PO, matrix_style PS,
            typename FUNCTOR, typename RNGTYPE>
  Matrix<T,RO,RS>
  BFGS (FUNCTOR fun, const Matrix<T,PO,PS>& theta, rng<RNGTYPE>& runif, 
        unsigned int maxit, T tolerance, bool trace = false)
  {
    SCYTHE_CHECK_10(! theta.isColVector(), scythe_dimension_error,
        "Theta not column vector");

    unsigned int n = theta.size();

    // H is initial inverse hessian
    Matrix<T,RO> H = inv(hesscdif(fun, theta));

    // gradient at starting values
    Matrix<T,RO> fgrad = gradfdif(fun, theta);
    Matrix<T,RO> thetamin = theta;
    Matrix<T,RO> fgrad_new = fgrad;
    Matrix<T,RO> I = eye<T,RO>(n); 
    Matrix<T,RO> s;
    Matrix<T,RO> y;

    unsigned int count = 0;
    while( (t(fgrad_new)*fgrad_new)[0] > tolerance) {
      Matrix<T> p = -1.0 * H * fgrad;
      //std::cout << "initial H * fgrad = " << H * fgrad << "\n";
      //std::cout << "initial p = " << p << "\n";

      T alpha = linesearch2(fun, thetamin, p, runif);
      //T alpha = linesearch1(fun, thetamin, p);

      //std::cout << "after linesearch p = " << p << "\n";


      Matrix<T> thetamin_new = thetamin + alpha * p;
      fgrad_new = gradfdif(fun, thetamin_new);
      s = thetamin_new - thetamin;
      y = fgrad_new - fgrad;
      T rho = 1.0 / (t(y) * s)[0];
      H = (I - rho * s * t(y)) * H *(I - rho * y * t(s))
        + rho * s * t(s);

      thetamin = thetamin_new;
      fgrad = fgrad_new;
      ++count;

      if (trace){
	std::cout << "BFGS iteration = " << count << std::endl;
	std::cout << "thetamin = " << (t(thetamin)) ;
	std::cout << "gradient = " << (t(fgrad)) ;
	std::cout << "t(gradient) * gradient = " << 
	  (t(fgrad) * fgrad) ;
	std::cout << "function value = " << fun(thetamin) << 
	  std::endl << std::endl;
      }
      //std::cout << "Hessian = " << hesscdif(fun, theta) << "\n";
      //std::cout << "H = " << H << "\n";
      //std::cout << "alpha = " << alpha << std::endl;
      //std::cout << "p = " << p << "\n";
      //std::cout << "-1 * H * fgrad = " << -1.0 * H * fgrad << "\n";

      SCYTHE_CHECK(count > maxit, scythe_convergence_error,
          "Failed to converge.  Try better starting values");
    }
   
    return thetamin;
  }

  // Default template
  template <typename T, matrix_order O, matrix_style S,
            typename FUNCTOR, typename RNGTYPE>
  Matrix<T,O,Concrete>
  BFGS (FUNCTOR fun, const Matrix<T,O,S>& theta, rng<RNGTYPE>& runif,
        unsigned int maxit, T tolerance, bool trace = false)
  {
    return BFGS<O,Concrete> (fun, theta, runif, maxit, tolerance, trace);
  }

  
  /* Solves a system of n nonlinear equations in n unknowns of the form
   * fun(thetastar) = 0 for thetastar given the function, starting 
   * value theta, max number of iterations, and tolerance.
   * Uses Broyden's method.
   */
   /*! \brief Solve a system of nonlinear equations.
    *
    * Solves a system of n nonlinear equations in n unknowns of the form
    * \f$fun(\theta^*) = 0\f$ for \f$\theta^*\f$.
    *
    * \param fun The function to solve.  The function should both take
    * and return a Matrix of type T.
    * \param theta A column vector of parameter values at which to
    * start the solve procedure.
    * \param maxit The maximum number of iterations.
    * \param tolerance The convergence tolerance.
    *
    * \throw scythe_dimension_error (Level 1)
    * \throw scythe_convergence_error (Level 1)
    *
    * \note
    * Users will typically wish to implement \a fun in terms of a
    * functor.  Using a functor provides a generic way in which to
    * evaluate functions with more than one parameter.  Furthermore,
    * although one can pass a function pointer to this routine,
    * the compiler cannot inline and fully optimize code
    * referenced by function pointers.
    */
  template <matrix_order RO, matrix_style RS, typename T,
            matrix_order PO, matrix_style PS, typename FUNCTOR>
  Matrix<T,RO,RS>
  nls_broyden(FUNCTOR fun, const Matrix<T,PO,PS>& theta,
              unsigned int maxit = 5000, T tolerance = 1e-6)
  {
    SCYTHE_CHECK_10(! theta.isColVector(), scythe_dimension_error,
        "Theta not column vector");


    Matrix<T,RO> thetastar = theta;
    Matrix<T,RO> B = jacfdif(fun, thetastar);

    Matrix<T,RO> fthetastar;
    Matrix<T,RO> p;
    Matrix<T,RO> thetastar_new;
    Matrix<T,RO> fthetastar_new;
    Matrix<T,RO> s;
    Matrix<T,RO> y;

    for (unsigned int i = 0; i < maxit; ++i) {
      fthetastar = fun(thetastar);
      p = lu_solve(B, -1 * fthetastar);
      T alpha = (T) 1.0;
      thetastar_new = thetastar + alpha*p;
      fthetastar_new = fun(thetastar_new);
      s = thetastar_new - thetastar;
      y = fthetastar_new - fthetastar;
      B = B + ((y - B * s) * t(s)) / (t(s) * s);
      thetastar = thetastar_new;
      if (max(fabs(fthetastar_new)) < tolerance)
        return thetastar;
    }
 
    SCYTHE_THROW_10(scythe_convergence_error,  "Failed to converge.  Try better starting values or increase maxit");

    return thetastar;
  }

  // default template
  template <typename T, matrix_order O, matrix_style S,
            typename FUNCTOR>
  Matrix<T,O,Concrete>
  nls_broyden (FUNCTOR fun, const Matrix<T,O,S>& theta,
               unsigned int maxit = 5000, T tolerance = 1e-6)
  {
    return nls_broyden<O,Concrete>(fun, theta, maxit, tolerance);
  }

} // namespace scythe

#endif /* SCYTHE_OPTIMIZE_H */