/usr/include/scythestat/rng/lecuyer.h is in libscythestat-dev 1.0.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 | /*
* Scythe Statistical Library
* Copyright (C) 2000-2002 Andrew D. Martin and Kevin M. Quinn;
* 2002-present Andrew D. Martin, Kevin M. Quinn, and Daniel
* Pemstein. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* under the terms of the GNU General Public License as published by
* Free Software Foundation; either version 2 of the License, or (at
* your option) any later version. See the text files COPYING
* and LICENSE, distributed with this source code, for further
* information.
* --------------------------------------------------------------------
* scythestat/rng/lecuyer.h
*
* Provides the class definition for the L'Ecuyer random number
* generator, a rng capable of generating many independent substreams.
* This class extends the abstract rng class by implementing runif().
* Based on RngStream.cpp, by Pierre L'Ecuyer.
*
* Pierre L'Ecuyer agreed to the following dual-licensing terms in an
* email received 7 August 2004. This dual-license was prompted by
* the Debian maintainers of R and MCMCpack.
*
* This software is Copyright (C) 2004 Pierre L'Ecuyer.
*
* License: this code can be used freely for personal, academic, or
* non-commercial purposes. For commercial licensing, please contact
* P. L'Ecuyer at lecuyer@iro.umontreal.ca.
*
* This code may also be redistributed and modified under the terms of
* the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
* USA.
*
*/
/*! \file lecuyer.h
* \brief The L'Ecuyer random number generator.
*
* This file contains the lecuyer class, a class that extends Scythe's
* base random number generation class (scythe::rng) by providing an
* implementation of scythe::rng::runif(), using L'Ecuyer's algorithm.
*
*/
#ifndef SCYTHE_LECUYER_H
#define SCYTHE_LECUYER_H
#include<cstdlib>
#include<iostream>
#include<string>
#ifdef SCYTHE_COMPILE_DIRECT
#include "rng.h"
#else
#include "scythestat/rng.h"
#endif
/* We want to use an anonymous namespace to make the following consts
* and functions local to this file, but mingw doesn't play nice with
* anonymous namespaces so we do things differently when using the
* cross-compiler.
*/
#ifdef __MINGW32__
#define SCYTHE_MINGW32_STATIC static
#else
#define SCYTHE_MINGW32_STATIC
#endif
namespace scythe {
#ifndef __MINGW32__
namespace {
#endif
SCYTHE_MINGW32_STATIC const double m1 = 4294967087.0;
SCYTHE_MINGW32_STATIC const double m2 = 4294944443.0;
SCYTHE_MINGW32_STATIC const double norm = 1.0 / (m1 + 1.0);
SCYTHE_MINGW32_STATIC const double a12 = 1403580.0;
SCYTHE_MINGW32_STATIC const double a13n = 810728.0;
SCYTHE_MINGW32_STATIC const double a21 = 527612.0;
SCYTHE_MINGW32_STATIC const double a23n = 1370589.0;
SCYTHE_MINGW32_STATIC const double two17 =131072.0;
SCYTHE_MINGW32_STATIC const double two53 =9007199254740992.0;
/* 1/2^24 */
SCYTHE_MINGW32_STATIC const double fact = 5.9604644775390625e-8;
// The following are the transition matrices of the two MRG
// components (in matrix form), raised to the powers -1, 1, 2^76,
// and 2^127, resp.
SCYTHE_MINGW32_STATIC const double InvA1[3][3] = { // Inverse of A1p0
{ 184888585.0, 0.0, 1945170933.0 },
{ 1.0, 0.0, 0.0 },
{ 0.0, 1.0, 0.0 } };
SCYTHE_MINGW32_STATIC const double InvA2[3][3] = { // Inverse of A2p0
{ 0.0, 360363334.0, 4225571728.0 },
{ 1.0, 0.0, 0.0 },
{ 0.0, 1.0, 0.0 } };
SCYTHE_MINGW32_STATIC const double A1p0[3][3] = {
{ 0.0, 1.0, 0.0 },
{ 0.0, 0.0, 1.0 },
{ -810728.0, 1403580.0, 0.0 } };
SCYTHE_MINGW32_STATIC const double A2p0[3][3] = {
{ 0.0, 1.0, 0.0 },
{ 0.0, 0.0, 1.0 },
{ -1370589.0, 0.0, 527612.0 } };
SCYTHE_MINGW32_STATIC const double A1p76[3][3] = {
{ 82758667.0, 1871391091.0, 4127413238.0 },
{ 3672831523.0, 69195019.0, 1871391091.0 },
{ 3672091415.0, 3528743235.0, 69195019.0 } };
SCYTHE_MINGW32_STATIC const double A2p76[3][3] = {
{ 1511326704.0, 3759209742.0, 1610795712.0 },
{ 4292754251.0, 1511326704.0, 3889917532.0 },
{ 3859662829.0, 4292754251.0, 3708466080.0 } };
SCYTHE_MINGW32_STATIC const double A1p127[3][3] = {
{ 2427906178.0, 3580155704.0, 949770784.0 },
{ 226153695.0, 1230515664.0, 3580155704.0 },
{ 1988835001.0, 986791581.0, 1230515664.0 } };
SCYTHE_MINGW32_STATIC const double A2p127[3][3] = {
{ 1464411153.0, 277697599.0, 1610723613.0 },
{ 32183930.0, 1464411153.0, 1022607788.0 },
{ 2824425944.0, 32183930.0, 2093834863.0 } };
// Return (a*s + c) MOD m; a, s, c and m must be < 2^35
SCYTHE_MINGW32_STATIC double
MultModM (double a, double s, double c, double m)
{
double v;
long a1;
v = a * s + c;
if (v >= two53 || v <= -two53) {
a1 = static_cast<long> (a / two17); a -= a1 * two17;
v = a1 * s;
a1 = static_cast<long> (v / m); v -= a1 * m;
v = v * two17 + a * s + c;
}
a1 = static_cast<long> (v / m);
/* in case v < 0)*/
if ((v -= a1 * m) < 0.0) return v += m; else return v;
}
// Compute the vector v = A*s MOD m. Assume that -m < s[i] < m.
// Works also when v = s.
SCYTHE_MINGW32_STATIC void
MatVecModM (const double A[3][3], const double s[3],
double v[3], double m)
{
int i;
double x[3]; // Necessary if v = s
for (i = 0; i < 3; ++i) {
x[i] = MultModM (A[i][0], s[0], 0.0, m);
x[i] = MultModM (A[i][1], s[1], x[i], m);
x[i] = MultModM (A[i][2], s[2], x[i], m);
}
for (i = 0; i < 3; ++i)
v[i] = x[i];
}
// Compute the matrix C = A*B MOD m. Assume that -m < s[i] < m.
// Note: works also if A = C or B = C or A = B = C.
SCYTHE_MINGW32_STATIC void
MatMatModM (const double A[3][3], const double B[3][3],
double C[3][3], double m)
{
int i, j;
double V[3], W[3][3];
for (i = 0; i < 3; ++i) {
for (j = 0; j < 3; ++j)
V[j] = B[j][i];
MatVecModM (A, V, V, m);
for (j = 0; j < 3; ++j)
W[j][i] = V[j];
}
for (i = 0; i < 3; ++i)
for (j = 0; j < 3; ++j)
C[i][j] = W[i][j];
}
// Compute the matrix B = (A^(2^e) Mod m); works also if A = B.
SCYTHE_MINGW32_STATIC void
MatTwoPowModM(const double A[3][3], double B[3][3],
double m, long e)
{
int i, j;
/* initialize: B = A */
if (A != B) {
for (i = 0; i < 3; ++i)
for (j = 0; j < 3; ++j)
B[i][j] = A[i][j];
}
/* Compute B = A^(2^e) mod m */
for (i = 0; i < e; i++)
MatMatModM (B, B, B, m);
}
// Compute the matrix B = (A^n Mod m); works even if A = B.
SCYTHE_MINGW32_STATIC void
MatPowModM (const double A[3][3], double B[3][3], double m,
long n)
{
int i, j;
double W[3][3];
/* initialize: W = A; B = I */
for (i = 0; i < 3; ++i)
for (j = 0; j < 3; ++j) {
W[i][j] = A[i][j];
B[i][j] = 0.0;
}
for (j = 0; j < 3; ++j)
B[j][j] = 1.0;
/* Compute B = A^n mod m using the binary decomposition of n */
while (n > 0) {
if (n % 2) MatMatModM (W, B, B, m);
MatMatModM (W, W, W, m);
n /= 2;
}
}
// Check that the seeds are legitimate values. Returns 0 if legal
// seeds, -1 otherwise.
SCYTHE_MINGW32_STATIC int
CheckSeed (const unsigned long seed[6])
{
int i;
for (i = 0; i < 3; ++i) {
if (seed[i] >= m1) {
SCYTHE_THROW(scythe_randseed_error,
"Seed[" << i << "] >= 4294967087, Seed is not set");
return -1;
}
}
for (i = 3; i < 6; ++i) {
if (seed[i] >= m2) {
SCYTHE_THROW(scythe_randseed_error,
"Seed[" << i << "] >= 4294944443, Seed is not set");
return -1;
}
}
if (seed[0] == 0 && seed[1] == 0 && seed[2] == 0) {
SCYTHE_THROW(scythe_randseed_error, "First 3 seeds = 0");
return -1;
}
if (seed[3] == 0 && seed[4] == 0 && seed[5] == 0) {
SCYTHE_THROW(scythe_randseed_error, "Last 3 seeds = 0");
return -1;
}
return 0;
}
#ifndef __MINGW32__
} // end anonymous namespace
#endif
/*! \brief The L'Ecuyer random number generator.
*
* This class defines a random number generator, using Pierre
* L'Ecuyer's algorithm (2000) and source code (2001) for
* generating multiple simultaneous streams of random uniform
* variates. The period of the underlying single-stream generator
* is approximately \f$3.1 \times 10^{57}\f$. Each individual
* stream is implemented in terms of a sequence of substreams (see
* L'Ecuyer et al (2000) for details).
*
* The lecuyer class extends Scythe's basic random number
* generating class, scythe::rng, implementing the interface that
* it defines.
*
* \see rng
* \see mersenne
*
*/
class lecuyer : public rng<lecuyer>
{
public:
// Constructor
/*! \brief Constructor
*
* This constructor creates an object encapsulating a random
* number stream, with an optional name. It also sets the seed
* of the stream to the package (default or user-specified) seed
* if this is the first stream generated, or, otherwise, to a
* value \f$2^{127}\f$ steps ahead of the seed of the previously
* constructed stream.
*
* \param streamname The optional name for the stream.
*
* \see SetPackageSeed(unsigned long seed[6])
* \see SetSeed(unsigned long seed[6])
* \see SetAntithetic(bool)
* \see IncreasedPrecis(bool)
* \see name()
*/
lecuyer (std::string streamname = "")
: rng<lecuyer> (),
streamname_ (streamname)
{
anti = false;
incPrec = false;
/* Information on a stream. The arrays {Cg, Bg, Ig} contain
* the current state of the stream, the starting state of the
* current SubStream, and the starting state of the stream.
* This stream generates antithetic variates if anti = true.
* It also generates numbers with extended precision (53 bits
* if machine follows IEEE 754 standard) if incPrec = true.
* nextSeed will be the seed of the next declared RngStream.
*/
for (int i = 0; i < 6; ++i) {
Bg[i] = Cg[i] = Ig[i] = nextSeed[i];
}
MatVecModM (A1p127, nextSeed, nextSeed, m1);
MatVecModM (A2p127, &nextSeed[3], &nextSeed[3], m2);
}
/*! \brief Get the stream's name.
*
* This method returns a stream's name string.
*
* \see lecuyer(const char*)
*/
std::string
name() const
{
return streamname_;
}
/*! \brief Reset the stream.
*
* This method resets the stream to its initial seeded state.
*
* \see ResetStartSubstream()
* \see ResetNextSubstream()
* \see SetSeed(unsigned long seed[6])
*/
void
ResetStartStream ()
{
for (int i = 0; i < 6; ++i)
Cg[i] = Bg[i] = Ig[i];
}
/*! \brief Reset the current substream.
*
*
* This method resets the stream to the first state of its
* current substream.
*
* \see ResetStartStream()
* \see ResetNextSubstream()
* \see SetSeed(unsigned long seed[6])
*
*/
void
ResetStartSubstream ()
{
for (int i = 0; i < 6; ++i)
Cg[i] = Bg[i];
}
/*! \brief Jump to the next substream.
*
* This method resets the stream to the first state of its next
* substream.
*
* \see ResetStartStream()
* \see ResetStartSubstream()
* \see SetSeed(unsigned long seed[6])
*
*/
void
ResetNextSubstream ()
{
MatVecModM(A1p76, Bg, Bg, m1);
MatVecModM(A2p76, &Bg[3], &Bg[3], m2);
for (int i = 0; i < 6; ++i)
Cg[i] = Bg[i];
}
/*! \brief Set the package seed.
*
* This method sets the overall package seed. The default
* initial seed is (12345, 12345, 12345, 12345, 12345, 12345).
* The package seed is the seed used to initialize the first
* constructed random number stream in a given program.
*
* \param seed An array of six integers to seed the package.
* The first three values cannot all equal 0 and must all be
* less than 4294967087 while the second trio of integers must
* all be less than 4294944443 and not all 0.
*
* \see SetSeed(unsigned long seed[6])
*
* \throw scythe_randseed_error (Level 0)
*/
static void
SetPackageSeed (unsigned long seed[6])
{
if (CheckSeed (seed)) return;
for (int i = 0; i < 6; ++i)
nextSeed[i] = seed[i];
}
/*! \brief Set the stream seed.
*
* This method sets the stream seed which is used to initialize
* the state of the given stream.
*
* \warning This method sets the stream seed in isolation and
* does not coordinate with any other streams. Therefore,
* using this method without care can result in multiple
* streams that overlap in the course of their runs.
*
* \param seed An array of six integers to seed the stream.
* The first three values cannot all equal 0 and must all be
* less than 4294967087 while the second trio of integers must
* all be less than 4294944443 and not all 0.
*
* \see SetPackageSeed(unsigned long seed[6])
* \see ResetStartStream()
* \see ResetStartSubstream()
* \see ResetNextSubstream()
*
* \throw scythe_randseed_error (Level 0)
*/
void
SetSeed (unsigned long seed[6])
{
if (CheckSeed (seed)) return;
for (int i = 0; i < 6; ++i)
Cg[i] = Bg[i] = Ig[i] = seed[i];
}
// XXX: get the cases formula working!
/*! \brief Advances the state of the stream.
*
* This method advances the input \f$n\f$ steps, using the rule:
* \f[
* n =
* \begin{cases}
* 2^e + c \quad if~e > 0, \\
* -2^{-e} + c \quad if~e < 0, \\
* c \quad if~e = 0.
* \end{cases}
* \f]
*
* \param e This parameter controls state advancement.
* \param c This parameter also controls state advancement.
*
* \see GetState()
* \see ResetStartStream()
* \see ResetStartSubstream()
* \see ResetNextSubstream()
*/
void
AdvanceState (long e, long c)
{
double B1[3][3], C1[3][3], B2[3][3], C2[3][3];
if (e > 0) {
MatTwoPowModM (A1p0, B1, m1, e);
MatTwoPowModM (A2p0, B2, m2, e);
} else if (e < 0) {
MatTwoPowModM (InvA1, B1, m1, -e);
MatTwoPowModM (InvA2, B2, m2, -e);
}
if (c >= 0) {
MatPowModM (A1p0, C1, m1, c);
MatPowModM (A2p0, C2, m2, c);
} else {
MatPowModM (InvA1, C1, m1, -c);
MatPowModM (InvA2, C2, m2, -c);
}
if (e) {
MatMatModM (B1, C1, C1, m1);
MatMatModM (B2, C2, C2, m2);
}
MatVecModM (C1, Cg, Cg, m1);
MatVecModM (C2, &Cg[3], &Cg[3], m2);
}
/*! \brief Get the current state.
*
* This method places the current state of the stream, as
* represented by six integers, into the array argument. This
* is useful for saving and restoring streams across program
* runs.
*
* \param seed An array of six integers that will hold the state values on return.
*
* \see AdvanceState()
*/
void
GetState (unsigned long seed[6]) const
{
for (int i = 0; i < 6; ++i)
seed[i] = static_cast<unsigned long> (Cg[i]);
}
/*! \brief Toggle generator precision.
*
* This method sets the precision level of the given stream. By
* default, streams generate random numbers with 32 bit
* resolution. If the user invokes this method with \a incp =
* true, then the stream will begin to generate variates with
* greater precision (53 bits on machines following the IEEE 754
* standard). Calling this method again with \a incp = false
* will return the precision of generated numbers to 32 bits.
*
* \param incp A boolean value where true implies high (most
* likely 53 bit) precision and false implies low (32 bit)
* precision.
*
* \see SetAntithetic(bool)
*/
void
IncreasedPrecis (bool incp)
{
incPrec = incp;
}
/*! \brief Toggle the orientation of generated random numbers.
*
* This methods causes the given stream to generate antithetic
* (1 - U, where U is the default number generated) when called
* with \a a = true. Calling this method with \a a = false will
* return generated numbers to their default orientation.
*
* \param a A boolean value that selects regular or antithetic
* variates.
*
* \see IncreasedPrecis(bool)
*/
void
SetAntithetic (bool a)
{
anti = a;
}
/*! \brief Generate a random uniform variate on (0, 1).
*
* This routine returns a random double precision floating point
* number from the uniform distribution on the interval (0,
* 1). This method overloads the pure virtual method of the
* same name in the rng base class.
*
* \see runif(unsigned int, unsigned int)
* \see RandInt(long, long)
* \see rng
*/
double
runif ()
{
if (incPrec)
return U01d();
else
return U01();
}
/* We have to override the overloaded form of runif because
* overloading the no-arg runif() hides the base class
* definition; C++ stops looking once it finds the above.
*/
/*! \brief Generate a Matrix of random uniform variates.
*
* This routine returns a Matrix of double precision random
* uniform variates. on the interval (0, 1). This method
* overloads the virtual method of the same name in the rng base
* class.
*
* This is the general template version of this method and
* is called through explicit template instantiation.
*
* \param rows The number of rows in the returned Matrix.
* \param cols The number of columns in the returned Matrix.
*
* \see runif()
* \see rng
*
* \note We are forced to override this overloaded method
* because the 1-arg version of runif() hides the base class's
* definition of this method from the compiler, although it
* probably should not.
*/
template <matrix_order O, matrix_style S>
Matrix<double,O,S> runif(unsigned int rows, unsigned int cols)
{
return rng<lecuyer>::runif<O,S>(rows,cols);
}
/*! \brief Generate a Matrix of random uniform variates.
*
* This routine returns a Matrix of double precision random
* uniform variates on the interval (0, 1). This method
* overloads the virtual method of the same name in the rng base
* class.
*
* This is the default template version of this method and
* is called through implicit template instantiation.
*
* \param rows The number of rows in the returned Matrix.
* \param cols The number of columns in the returned Matrix.
*
* \see runif()
* \see rng
*
* \note We are forced to override this overloaded method
* because the 1-arg version of runif() hides the base class's
* definition of this method from the compiler, although it
* probably should not.
*/
Matrix<double,Col,Concrete> runif(unsigned int rows,
unsigned int cols)
{
return rng<lecuyer>::runif<Col,Concrete>(rows, cols);
}
/*! \brief Generate the next random integer.
*
* This method generates a random integer from the discrete
* uniform distribution on the interval [\a low, \a high].
*
* \param low The lower bound of the interval to evaluate.
* \param high the upper bound of the interval to evaluate.
*
* \see runif()
*/
long
RandInt (long low, long high)
{
return low + static_cast<long> ((high - low + 1) * runif ());
}
protected:
// Generate the next random number.
//
double
U01 ()
{
long k;
double p1, p2, u;
/* Component 1 */
p1 = a12 * Cg[1] - a13n * Cg[0];
k = static_cast<long> (p1 / m1);
p1 -= k * m1;
if (p1 < 0.0) p1 += m1;
Cg[0] = Cg[1]; Cg[1] = Cg[2]; Cg[2] = p1;
/* Component 2 */
p2 = a21 * Cg[5] - a23n * Cg[3];
k = static_cast<long> (p2 / m2);
p2 -= k * m2;
if (p2 < 0.0) p2 += m2;
Cg[3] = Cg[4]; Cg[4] = Cg[5]; Cg[5] = p2;
/* Combination */
u = ((p1 > p2) ? (p1 - p2) * norm : (p1 - p2 + m1) * norm);
return (anti == false) ? u : (1 - u);
}
// Generate the next random number with extended (53 bits) precision.
double
U01d ()
{
double u;
u = U01();
if (anti) {
// Don't forget that U01() returns 1 - u in the antithetic case
u += (U01() - 1.0) * fact;
return (u < 0.0) ? u + 1.0 : u;
} else {
u += U01() * fact;
return (u < 1.0) ? u : (u - 1.0);
}
}
// Public members of the class start here
// The default seed of the package; will be the seed of the first
// declared RngStream, unless SetPackageSeed is called.
static double nextSeed[6];
/* Instance variables */
double Cg[6], Bg[6], Ig[6];
bool anti, incPrec;
std::string streamname_;
};
/* Default seed definition */
double lecuyer::nextSeed[6] =
{
12345.0, 12345.0, 12345.0, 12345.0, 12345.0, 12345.0
};
}
#endif /* SCYTHE_LECUYER_H */
|