This file is indexed.

/usr/include/scythestat/rng/rtmvnorm.h is in libscythestat-dev 1.0.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/* 
 * Scythe Statistical Library Copyright (C) 2000-2002 Andrew D. Martin
 * and Kevin M. Quinn; 2002-present Andrew D. Martin, Kevin M. Quinn,
 * and Daniel Pemstein.  All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify under the terms of the GNU General Public License as
 * published by Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.  See the text files
 * COPYING and LICENSE, distributed with this source code, for further
 * information.
 * --------------------------------------------------------------------
 *  scythestat/rng/rtmvnorm.h
 *
 */

/*!
 * \file rng/rtmvnorm.h
 *
 * \brief A truncated multivariate normal random number generator.
 * 
 * This file provides the class definition for the rtmvnorm class, a
 * functor that generates random variates from truncated multivariate
 * normal distributions.
 *
 */

#ifndef SCYTHE_RTMVNORM_H
#define SCYTHE_RTMVNORM_H

#include <iostream>
#include <cmath>

#ifdef SCYTHE_COMPILE_DIRECT
#include "matrix.h"
#include "rng.h"
#include "error.h"
#include "algorithm.h"
#include "ide.h"
#else
#include "scythestat/matrix.h"
#include "scythestat/rng.h"
#include "scythestat/error.h"
#include "scythestat/algorithm.h"
#include "scythestat/ide.h"
#endif
namespace scythe
{
  /* Truncated Multivariate Normal Distribution by Gibbs sampling
   * (Geweke 1991).  This is a functor that allows one to
   * initialize---and optionally burn in---a sampler for a given
   * truncated multivariate normal distribution on construction
   * and then make (optionally thinned) draws with calls to the ()
   * operator.
   *
   */
   /*! \brief Truncated multivariate normal distribution random number
    * generator.
    *
    * This class is a functor that allows one to initialize, and
    * optionally burn in, a Gibbs sampler (Geweke 1991) for a given
    * truncated multivariate normal distribution on construction and
    * then make optionally thinned draws from the distribution with
    * calls to the () operator.
    */

  template <class RNGTYPE>
  class rtmvnorm {
    public:

       /*! \brief Standard constructor.
        *
        * This method constructs a functor capable of generating
        * linearly constrained variates of the form: \f$x \sim
        * N_n(\mu, \Sigma), a \le Dx \le b\f$.  That is, it generates
        * an object capable of simulating random variables from an
        * n-variate normal distribution defined by \a mu
        * (\f$\mu\f$) and \a sigma (\f$\Sigma\f$) subject to fewer
        * than \f$n\f$ linear constraints, defined by the Matrix \a D
        * and the bounds vectors \a a and \a b.
        *
        * The user may pass optional burn in and thinning
        * parameters to the constructor.  The \a burnin parameter
        * indicates the number of draws that the sampler should
        * initially make and throw out on construction.  The \a thin
        * parameter controls the behavior of the functor's ()
        * operator.  A thinning parameter of 1 indicates that each
        * call to operator()() should return the random variate
        * generated by one iteration of the Gibbs sampler, while a
        * value of 2 indicates that the sampler should throw every
        * other variate out, a value of 3 causes operator()() to
        * iterate the sampler three times before returning, and so on.
        *
        * Finally, this constructor inverts \a D before proceeding.
        * If you have pre-inverted \a D, you can set the \a
        * preinvertedD flag to true and the functor will not redo the
        * operation.  This helps optimize common cases; for example,
        * when \a D is simply the identity matrix (and thus equal to
        * its own inverse), there is no need to compute the inverse.
        *
        * \param mu An n x 1 vector of means. \param sigma An n x n
        * variance-covariance matrix. \param D An n x n linear
        * constraint definition matrix; should be of rank n. \param a
        * An n x 1 lower bound vector (may contain infinity or
        * negative infinity). \param b An n x 1 upper bound vector (may
        * contain infinity or negative infinity). \param generator
        * Reference to an rng object \param burnin Optional burnin
        * parameter; default value is 0. \param thin Optional thinning
        * parameter; default value is 1. \param preinvertedD Optional
        * flag with default value of false; if set to true, functor
        * will not invert \a D.
        *
        * \throw scythe_dimension_error (Level 1)
        * \throw scythe_conformation_error (Level 1)
        * \throw scythe_invalid_arg (Level 1)
        *
        * \see operator()()
        * \see rng
        */
      template <matrix_order PO1, matrix_style PS1, matrix_order PO2,
                matrix_style PS2, matrix_order PO3, matrix_style PS3,
                matrix_order PO4, matrix_style PS5, matrix_order PO5,
                matrix_style PS4>
      rtmvnorm (const Matrix<double, PO1,PS1>& mu,
                const Matrix<double, PO2, PS2>& sigma,
                const Matrix<double, PO3, PS3>& D,
                const Matrix<double, PO4, PS4>& a,
                const Matrix<double, PO5, PS5>& b, rng<RNGTYPE>& generator, 
                unsigned int burnin = 0, unsigned int thin = 1,
                bool preinvertedD = false) 
      : mu_ (mu), C_ (mu.rows(), mu.rows(), false), 
        h_ (mu.rows(), 1, false), z_ (mu.rows(), 1, true, 0), 
        generator_ (generator), n_ (mu.rows()), thin_ (thin), iter_ (0)
      {
        SCYTHE_CHECK_10(thin == 0, scythe_invalid_arg,
            "thin must be >= 1");
        SCYTHE_CHECK_10(! mu.isColVector(), scythe_dimension_error,
            "mu not column vector");
        SCYTHE_CHECK_10(!  sigma.isSquare(), scythe_dimension_error,
            "sigma not square");
        SCYTHE_CHECK_10(!  D.isSquare(), scythe_dimension_error,
            "D not square");
        SCYTHE_CHECK_10(!  a.isColVector(), scythe_dimension_error,
            "a not column vector");
        SCYTHE_CHECK_10(!  b.isColVector(), scythe_dimension_error,
            "b not column vector");
        SCYTHE_CHECK_10(sigma.rows() != n_ || D.rows() != n_ || 
            a.rows() != n_ || b.rows() != n_, scythe_conformation_error,
            "mu, sigma, D, a, and b not conformable");

        // TODO will D * sigma * t(D) always be positive definite,
        // allowing us to use the faster invpd?
        if (preinvertedD)
          Dinv_ = D;
        else
          Dinv_ = inv(D);
        Matrix<> Tinv = inv(D * sigma * t(D));
        alpha_ = a - D * mu;
        beta_ =  b - D * mu;

        // Check truncation bounds
        if (SCYTHE_DEBUG > 0) {
          for (unsigned int i = 0; i < n_; ++i) {
            SCYTHE_CHECK(alpha_(i) >= beta_(i), scythe_invalid_arg,
                "Truncation bound " << i 
                << " not logically consistent");
          }
        }

        // Precompute some stuff (see Geweke 1991 pg 7).
        for (unsigned int i = 0; i < n_; ++i) {
          C_(i, _) = -(1 / Tinv(i, i)) % Tinv(i, _);
          C_(i, i) = 0; // not really clever but probably too clever
          h_(i) = std::sqrt(1 / Tinv(i, i));
          SCYTHE_CHECK_30(std::isnan(h_(i)), scythe_invalid_arg,
              "sigma is not positive definite");
        }

        // Do burnin
        for (unsigned int i = 0; i < burnin; ++i)
          sample ();
      }

       /*! \brief Generate random variates.
        *
        * Iterates the Gibbs sampler and returns a Matrix containing a
        * single draw from the truncated multivariate random number
        * generator encapsulated by the instantiated object.  Thinning
        * of sampler draws is specified at construction.
        *
        * \see rtmvnorm()
        */
      template <matrix_order O, matrix_style S>
      Matrix<double, O, S> operator() ()
      {
        do { sample (); } while (iter_ % thin_ != 0);

        return (mu_ + Dinv_ * z_);
      }

       /*! \brief Generate random variates.
        *
        * Default template. See general template for details.
        *
        * \see operator()().
        */
      Matrix<double,Col,Concrete> operator() ()
      {
        return operator()<Col, Concrete>();
      }

    protected:
      /* Does one step of the Gibbs sampler (see Geweke 1991 p 6) */
      void sample ()
      {
        double czsum;
        double above;
        double below;
        for (unsigned int i = 0; i < n_; ++i) {

          // Calculate sum_{j \ne i} c_{ij} z_{j}
          czsum = 0;
          for (unsigned int j = 0; j < n_; ++j) {
            if (i == j) continue;
            czsum += C_(i, j) * z_(j);
          }

          // Calc truncation of conditional univariate std normal
          below = (alpha_(i) - czsum) / h_(i);
          above = (beta_(i) - czsum) / h_(i);
          
          // Draw random variate z_i
          z_(i) = h_(i);
          if (above == std::numeric_limits<double>::infinity()){
            if (below == -std::numeric_limits<double>::infinity())
              z_(i) *= generator_.rnorm(0, 1); // untruncated
            else
              z_(i) *= generator_.rtbnorm_combo(0, 1, below);
          } else if (below == 
              -std::numeric_limits<double>::infinity())
            z_(i) *= generator_.rtanorm_combo(0, 1, above);
          else
            z_(i) *= generator_.rtnorm_combo(0, 1, below, above);

          z_(i) += czsum;
        }

        ++iter_;
      }

      /* Instance variables */
      // Various reused computation matrices with names from
      // Geweke 1991.
      Matrix<> mu_;   Matrix<> Dinv_; 
      Matrix<> C_; Matrix<> alpha_; Matrix<> beta_; Matrix<> h_; 

      Matrix<> z_; // The current draw of the posterior

      rng<RNGTYPE>& generator_; // Refernce to random number generator

      unsigned int n_;  // The dimension of the distribution
      unsigned int thin_; // thinning parameter
      unsigned int iter_; // The current post-burnin iteration
  };
} // end namespace scythe
#endif