This file is indexed.

/usr/share/uim/sxpathlib.scm is in libuim-data 1:1.8.6+gh20161003.0.d63dadd-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
;;			XML processing in Scheme
;		     SXPath -- SXML Query Language
;
; $Id: sxpathlib.scm,v 1.1 2003-07-22 11:22:11 shirok Exp $
;
; This code is in Public Domain
; It's based on SXPath by Oleg Kiselyov, and multiple improvements 
; implemented by Dmitry Lizorkin.
;
; The list of differences from original SXPath.scm my be found in changelog.txt
; 
;  Kirill Lisovsky    lisovsky@acm.org
;
;                                 *  *  *
;
; SXPath is a query language for SXML, an instance of XML Information
; set (Infoset) in the form of s-expressions. See SSAX.scm for the
; definition of SXML and more details. SXPath is also a translation into
; Scheme of an XML Path Language, XPath:
;	http://www.w3.org/TR/xpath
; XPath and SXPath describe means of selecting a set of Infoset's items
; or their properties.
;
; To facilitate queries, XPath maps the XML Infoset into an explicit
; tree, and introduces important notions of a location path and a
; current, context node. A location path denotes a selection of a set of
; nodes relative to a context node. Any XPath tree has a distinguished,
; root node -- which serves as the context node for absolute location
; paths. Location path is recursively defined as a location step joined
; with a location path. A location step is a simple query of the
; database relative to a context node. A step may include expressions
; that further filter the selected set. Each node in the resulting set
; is used as a context node for the adjoining location path. The result
; of the step is a union of the sets returned by the latter location
; paths.
;
; The SXML representation of the XML Infoset (see SSAX.scm) is rather
; suitable for querying as it is. Bowing to the XPath specification,
; we will refer to SXML information items as 'Nodes':
; 	<Node> ::= <Element> | <attributes-coll> | <attrib>
; 		   | "text string" | <PI>
; This production can also be described as
;	<Node> ::= (name . <Nodeset>) | "text string"
; An (ordered) set of nodes is just a list of the constituent nodes:
; 	<Nodeset> ::= (<Node> ...)
; Nodesets, and Nodes other than text strings are both lists. A
; <Nodeset> however is either an empty list, or a list whose head is not
; a symbol.  A symbol at the head of a node is either an XML name (in
; which case it's a tag of an XML element), or an administrative name
; such as '@'.  This uniform list representation makes processing rather
; simple and elegant, while avoiding confusion. The multi-branch tree
; structure formed by the mutually-recursive datatypes <Node> and
; <Nodeset> lends itself well to processing by functional languages.
;
; A location path is in fact a composite query over an XPath tree or
; its branch. A singe step is a combination of a projection, selection
; or a transitive closure. Multiple steps are combined via join and
; union operations. This insight allows us to _elegantly_ implement
; XPath as a sequence of projection and filtering primitives --
; converters -- joined by _combinators_. Each converter takes a node
; and returns a nodeset which is the result of the corresponding query
; relative to that node. A converter can also be called on a set of
; nodes. In that case it returns a union of the corresponding queries over
; each node in the set. The union is easily implemented as a list
; append operation as all nodes in a SXML tree are considered
; distinct, by XPath conventions. We also preserve the order of the
; members in the union. Query combinators are high-order functions:
; they take converter(s) (which is a Node|Nodeset -> Nodeset function)
; and compose or otherwise combine them. We will be concerned with
; only relative location paths [XPath]: an absolute location path is a
; relative path applied to the root node.
;
; Similarly to XPath, SXPath defines full and abbreviated notations
; for location paths. In both cases, the abbreviated notation can be
; mechanically expanded into the full form by simple rewriting
; rules. In case of SXPath the corresponding rules are given as
; comments to a sxpath function, below. The regression test suite at
; the end of this file shows a representative sample of SXPaths in
; both notations, juxtaposed with the corresponding XPath
; expressions. Most of the samples are borrowed literally from the
; XPath specification, while the others are adjusted for our running
; example, tree1.
;

;; Read-only decrement
(define-macro (mm x) `(- ,x 1))

;=============================================================================
; Basic converters and applicators
; A converter is a function
;	type Converter = Node|Nodeset -> Nodeset
; A converter can also play a role of a predicate: in that case, if a
; converter, applied to a node or a nodeset, yields a non-empty
; nodeset, the converter-predicate is deemed satisfied. Throughout
; this file a nil nodeset is equivalent to #f in denoting a failure.

; Returns #t if given object is a nodeset
(define (nodeset? x)
  (or (and (pair? x) (not (symbol? (car x)))) (null? x)))

; If x is a nodeset - returns it as is, otherwise wrap it in a list.
(define (as-nodeset x)
  (if (nodeset? x) x (list x)))

;-----------------------------------------------------------------------------
; Node test
; The following functions implement 'Node test's as defined in
; Sec. 2.3 of XPath document. A node test is one of the components of a
; location step. It is also a converter-predicate in SXPath.

; Predicate which returns #t if <obj> is SXML element, otherwise returns #f. 
(define (sxml:element? obj)	
   (and (pair? obj)
	(symbol? (car obj))
	(not (memq (car obj) 
			   ; '(% %% *PI* *COMMENT* *ENTITY* *NAMESPACES*)
			   ; the line above is a workaround for old SXML
	'(% %% *PI* *COMMENT* *ENTITY*)))))

; The function ntype-names?? takes a list of acceptable node names as a
; criterion and returns a function, which, when applied to a node, 
; will return #t if the node name is present in criterion list and #f
; othervise.
;	ntype-names?? :: ListOfNames -> Node -> Boolean
(define (ntype-names?? crit)
  (lambda(node)
    (and (pair? node)
	 (memq (car node) crit))))

; The function ntype?? takes a type criterion and returns
; a function, which, when applied to a node, will tell if the node satisfies
; the test.
;	ntype?? :: Crit -> Node -> Boolean
;
; The criterion 'crit' is 
;  one of the following symbols:
;	id		- tests if the Node has the right name (id)
;	%		- tests if the Node is an <attributes-list>
;	*		- tests if the Node is an <Element>
;	*text*		- tests if the Node is a text node
;	*data*		- tests if the Node is a data node 
;                         (text, number, boolean, etc., but not pair)
;	*PI*		- tests if the Node is a PI node
;	*COMMENT*	- tests if the Node is a COMMENT node
;	*ENTITY*        - tests if the Node is a ENTITY node
;	*any*		- #t for any type of Node
(define (ntype?? crit)
  (case crit
    ((*) sxml:element?)
    ((*any*) (lambda (node) #t))
    ((*text*) (lambda (node) (string? node)))
    ((*data*) (lambda (node) (not (pair? node))))
    (else (lambda (node) (and (pair? node) (eq? crit (car node)))))
    ))

; This function takes a namespace-id, and returns a predicate
; Node -> Boolean, which is #t for nodes with this very namespace-id.
; ns-id is a string
; (ntype-namespace-id?? #f) will be #t for nodes with non-qualified names.
(define (ntype-namespace-id?? ns-id)
  (lambda (node)
    (and (pair? node)
	 (not (memq (car node) 
			 '(% %% *PI* *COMMENT* *ENTITY*)))
	 (let ((nm (symbol->string (car node))))
	   (cond 
	     ((string-rindex nm #\:)	   
	      => (lambda (pos) 
	      (and 
		(= pos (string-length ns-id))
		(string-prefix? ns-id nm))))
	     (else (not ns-id)))))))
;^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

; This function takes a predicate and returns it inverted 
; That is if the given predicate yelds #f or '() the inverted one  
; yields the given node (#t) and vice versa.
(define (sxml:invert pred)
  (lambda(node)
    (case (pred node)
      ((#f '()) node)
      (else #f))))

; Curried equivalence converter-predicates
(define (node-eq? other)
  (lambda (node)
    (eq? other node)))

(define (node-equal? other)
  (lambda (node)
    (equal? other node)))

; node-pos:: N -> Nodeset -> Nodeset, or
; node-pos:: N -> Converter
; Select the N'th element of a Nodeset and return as a singular Nodeset;
; Return an empty nodeset if the Nth element does not exist.
; ((node-pos 1) Nodeset) selects the node at the head of the Nodeset,
; if exists; ((node-pos 2) Nodeset) selects the Node after that, if
; exists.
; N can also be a negative number: in that case the node is picked from
; the tail of the list.
; ((node-pos -1) Nodeset) selects the last node of a non-empty nodeset;
; ((node-pos -2) Nodeset) selects the last but one node, if exists.
(define (node-pos n)
  (lambda (nodeset)
    (cond
     ((not (nodeset? nodeset)) '())
     ((null? nodeset) nodeset)
     ((eqv? n 1) (list (car nodeset)))
     ((negative? n) ((node-pos (+ n 1 (length nodeset))) nodeset))
     (else
      (assert (positive? n))
      ((node-pos (mm n)) (cdr nodeset))))))

; filter:: Converter -> Converter
; A filter applicator, which introduces a filtering context. The argument
; converter is considered a predicate, with either #f or nil result meaning
; failure.
(define (sxml:filter pred?)
  (lambda (lst)	; a nodeset or a node (will be converted to a singleton nset)
    (let loop ((lst (as-nodeset lst)) 
	       (res '()))
      (if (null? lst)
	  (reverse res)
	  (let ((pred-result (pred? (car lst))))
	    (loop (cdr lst)
		  (if (and pred-result (not (null? pred-result)))
		      (cons (car lst) res)
		      res)))))))

; take-until:: Converter -> Converter, or
; take-until:: Pred -> Node|Nodeset -> Nodeset
; Given a converter-predicate and a nodeset, apply the predicate to
; each element of the nodeset, until the predicate yields anything but #f or
; nil. Return the elements of the input nodeset that have been processed
; till that moment (that is, which fail the predicate).
; take-until is a variation of the filter above: take-until passes
; elements of an ordered input set till (but not including) the first
; element that satisfies the predicate.
; The nodeset returned by ((take-until (not pred)) nset) is a subset -- 
; to be more precise, a prefix -- of the nodeset returned by
; ((filter pred) nset)
(define (take-until pred?)
  (lambda (lst)	; a nodeset or a node (will be converted to a singleton nset)
    (let loop ((lst (as-nodeset lst)))
      (if (null? lst) lst
	  (let ((pred-result (pred? (car lst))))
	    (if (and pred-result (not (null? pred-result)))
		'()
		(cons (car lst) (loop (cdr lst)))))
	  ))))

; take-after:: Converter -> Converter, or
; take-after:: Pred -> Node|Nodeset -> Nodeset
; Given a converter-predicate and a nodeset, apply the predicate to
; each element of the nodeset, until the predicate yields anything but #f or
; nil. Return the elements of the input nodeset that have not been processed:
; that is, return the elements of the input nodeset that follow the first
; element that satisfied the predicate.
; take-after along with take-until partition an input nodeset into three
; parts: the first element that satisfies a predicate, all preceding
; elements and all following elements.
(define (take-after pred?)
  (lambda (lst)	; a nodeset or a node (will be converted to a singleton nset)
    (let loop ((lst (as-nodeset lst)))
      (if (null? lst) lst
	  (let ((pred-result (pred? (car lst))))
	    (if (and pred-result (not (null? pred-result)))
		(cdr lst)
		(loop (cdr lst))))
	  ))))

; Apply proc to each element of lst and return the list of results.
; if proc returns a nodeset, splice it into the result
;
; From another point of view, map-union is a function Converter->Converter,
; which places an argument-converter in a joining context.
(define (map-union proc lst)
  (if (null? lst) lst
      (let ((proc-res (proc (car lst))))
	((if (nodeset? proc-res) append cons)
	 proc-res (map-union proc (cdr lst))))))

; node-reverse :: Converter, or
; node-reverse:: Node|Nodeset -> Nodeset
; Reverses the order of nodes in the nodeset
; This basic converter is needed to implement a reverse document order
; (see the XPath Recommendation).
(define node-reverse 
  (lambda (node-or-nodeset)
    (if (not (nodeset? node-or-nodeset)) (list node-or-nodeset)
	(reverse node-or-nodeset))))

; node-trace:: String -> Converter
; (node-trace title) is an identity converter. In addition it prints out
; a node or nodeset it is applied to, prefixed with the 'title'.
; This converter is very useful for debugging.
(define (node-trace title)
  (lambda (node-or-nodeset)
    (cout nl "-->" title " :")
    (pp node-or-nodeset)
    node-or-nodeset))


;------------------------------------------------------------------------------
; Converter combinators
;
; Combinators are higher-order functions that transmogrify a converter
; or glue a sequence of converters into a single, non-trivial
; converter. The goal is to arrive at converters that correspond to
; XPath location paths.
;
; From a different point of view, a combinator is a fixed, named
; _pattern_ of applying converters. Given below is a complete set of
; such patterns that together implement XPath location path
; specification. As it turns out, all these combinators can be built
; from a small number of basic blocks: regular functional composition,
; map-union and filter applicators, and the nodeset union.



; select-kids:: Pred -> Node -> Nodeset
; Given a Node, return an (ordered) subset its children that satisfy
; the Pred (a converter, actually)
; select-kids:: Pred -> Nodeset -> Nodeset
; The same as above, but select among children of all the nodes in
; the Nodeset
;
; More succinctly, the signature of this function is
; select-kids:: Converter -> Converter
(define (select-kids test-pred?)
  (lambda (node)		; node or node-set
    (cond 
     ((null? node) node)
     ((not (pair? node)) '())   ; No children
     ((symbol? (car node))
      ((sxml:filter test-pred?) (cdr node)))	; it's a single node
     (else (map-union (select-kids test-pred?) node)))))


; node-self:: Pred -> Node -> Nodeset, or
; node-self:: Converter -> Converter
; Similar to select-kids but apply to the Node itself rather
; than to its children. The resulting Nodeset will contain either one
; component, or will be empty (if the Node failed the Pred).
(define node-self sxml:filter)


; node-join:: [LocPath] -> Node|Nodeset -> Nodeset, or
; node-join:: [Converter] -> Converter
; join the sequence of location steps or paths as described
; in the title comments above.
(define (node-join . selectors)
  (lambda (nodeset)		; Nodeset or node
    (let loop ((nodeset nodeset) (selectors selectors))
      (if (null? selectors) nodeset
	  (loop 
	   (if (nodeset? nodeset)
	       (map-union (car selectors) nodeset)
	       ((car selectors) nodeset))
	   (cdr selectors))))))


; node-reduce:: [LocPath] -> Node|Nodeset -> Nodeset, or
; node-reduce:: [Converter] -> Converter
; A regular functional composition of converters.
; From a different point of view,
;    ((apply node-reduce converters) nodeset)
; is equivalent to
;    (foldl apply nodeset converters)
; i.e., folding, or reducing, a list of converters with the nodeset
; as a seed.
(define (node-reduce . converters)
  (lambda (nodeset)		; Nodeset or node
    (let loop ((nodeset nodeset) (converters converters))
      (if (null? converters) nodeset
	  (loop ((car converters) nodeset) (cdr converters))))))


; node-or:: [Converter] -> Converter
; This combinator applies all converters to a given node and
; produces the union of their results.
; This combinator corresponds to a union, '|' operation for XPath
; location paths.
; (define (node-or . converters)
;   (lambda (node-or-nodeset)
;     (if (null? converters) node-or-nodeset
; 	(append 
; 	 ((car converters) node-or-nodeset)
; 	 ((apply node-or (cdr converters)) node-or-nodeset)))))
; More optimal implementation follows
(define (node-or . converters)
  (lambda (node-or-nodeset)
    (let loop ((result '()) (converters converters))
      (if (null? converters) result
	  (loop (append result (or ((car converters) node-or-nodeset) '()))
		(cdr converters))))))


; node-closure:: Converter -> Converter
; Select all _descendants_ of a node that satisfy a converter-predicate.
; This combinator is similar to select-kids but applies to
; grand... children as well.
; This combinator implements the "descendant::" XPath axis
; Conceptually, this combinator can be expressed as
; (define (node-closure f)
;      (node-or
;        (select-kids f)
;	 (node-reduce (select-kids (ntype?? '*)) (node-closure f))))
; This definition, as written, looks somewhat like a fixpoint, and it
; will run forever. It is obvious however that sooner or later
; (select-kids (ntype?? '*)) will return an empty nodeset. At
; this point further iterations will no longer affect the result and
; can be stopped.
(define (node-closure test-pred?)	    
  (lambda (node)		; Nodeset or node
    (let loop ((parent node) (result '()))
      (if (null? parent) result
	  (loop (sxml:child-elements parent)
		(append result
			((select-kids test-pred?) parent)))
	  ))))

;=============================================================================
; Unified with sxpath-ext and sxml-tools

; According to XPath specification 2.3, this test is true for any
; XPath node.
; For SXML auxiliary lists and lists of attributes has to be excluded.
(define (sxml:node? node)
  (not (and 
	 (pair? node)
	 (memq (car node) '(% %%)))))

; Returns the list of attributes for a given SXML node
; Empty list is returned if the given node os not an element,
; or if it has no list of attributes
(define (sxml:attr-list obj)
  (if (and  (sxml:element? obj) 
	    (not (null? (cdr obj)))
	    (pair? (cadr obj)) 
	    (eq? '% (caadr obj)))
	 (cdadr obj)
	 '()))

; Attribute axis
(define (sxml:attribute test-pred?)
  (let ((fltr (sxml:filter test-pred?)))
    (lambda (node)
      (fltr
	(apply append
	       (map
             sxml:attr-list
		(as-nodeset node)))))))

; Child axis
;  This function is similar to 'select-kids', but it returns an empty
;  child-list for PI, Comment and Entity nodes
(define (sxml:child test-pred?)
  (lambda (node)		; node or node-set
    (cond 
      ((null? node) node)
      ((not (pair? node)) '())   ; No children
      ((memq (car node) '(*PI* *COMMENT* *ENTITY*))   ; PI, Comment or Entity
       '())   ; No children
      ((symbol? (car node))    ; it's a single node       
       ((sxml:filter test-pred?) (cdr node)))
      (else (map-union (sxml:child test-pred?) node)))))

; Parent axis
; Given a predicate, it returns a function 
;  RootNode -> Converter
; which which yields a 
;  node -> parent 
; converter then applied to a rootnode.
; Thus, such a converter may be constructed using
;  ((sxml:parent test-pred) rootnode)
; and returns a parent of a node it is applied to.
; If applied to a nodeset, it returns the 
; list of parents of nodes in the nodeset. The rootnode does not have
; to be the root node of the whole SXML tree -- it may be a root node
; of a branch of interest.
; The parent:: axis can be used with any SXML node.
(define (sxml:parent test-pred?)
  (lambda (root-node)   ; node or nodeset
    (lambda (node)   ; node or nodeset
      (if (nodeset? node)
	(map-union ((sxml:parent test-pred?) root-node) node)
	(let rpt ((pairs
		    (apply append
		     (map 
			      (lambda (root-n)
				(map
				  (lambda (arg) (cons arg root-n))
				  (append 
				    (sxml:attr-list root-n)
				    (sxml:child-nodes root-n))))
                              (as-nodeset root-node)))
		     ))
	  (if (null? pairs)
	    '()
	    (let ((pair (car pairs)))
	      (if (eq? (car pair) node)
		((sxml:filter test-pred?) (list (cdr pair)))
		(rpt (append
			(map
			  (lambda (arg) (cons arg (car pair)))
			  (append 
			    (sxml:attr-list (car pair))
			    (sxml:child-nodes (car pair))))
			(cdr pairs)
			))))))))))


;=============================================================================
; Popular short cuts 

; node-parent:: RootNode -> Converter
; (node-parent rootnode) yields a converter that returns a parent of a
; node it is applied to. If applied to a nodeset, it returns the list
; of parents of nodes in the nodeset.
; Given the notation of Philip Wadler's paper on semantics of XSLT,
;  parent(x) = { y | y=subnode*(root), x=subnode(y) }
; Therefore, node-parent is not the fundamental converter: it can be
; expressed through the existing ones.  Yet node-parent is a rather
; convenient converter. It corresponds to a parent:: axis of SXPath.
;
; Please note: this function is provided for backward compatibility 
; with SXPath/SXPathlib ver. 3.5.x.x and earlier.
; Now it's a particular case of 'sxml:parent' application: 
(define node-parent (sxml:parent (ntype?? '*any*)))

(define sxml:child-nodes (sxml:child sxml:node?))

(define sxml:child-elements (select-kids sxml:element?))