/usr/include/viennacl/compressed_matrix.hpp is in libviennacl-dev 1.7.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 | #ifndef VIENNACL_COMPRESSED_MATRIX_HPP_
#define VIENNACL_COMPRESSED_MATRIX_HPP_
/* =========================================================================
Copyright (c) 2010-2016, Institute for Microelectronics,
Institute for Analysis and Scientific Computing,
TU Wien.
Portions of this software are copyright by UChicago Argonne, LLC.
-----------------
ViennaCL - The Vienna Computing Library
-----------------
Project Head: Karl Rupp rupp@iue.tuwien.ac.at
(A list of authors and contributors can be found in the manual)
License: MIT (X11), see file LICENSE in the base directory
============================================================================= */
/** @file viennacl/compressed_matrix.hpp
@brief Implementation of the compressed_matrix class
*/
#include <vector>
#include <list>
#include <map>
#include "viennacl/forwards.h"
#include "viennacl/vector.hpp"
#include "viennacl/linalg/sparse_matrix_operations.hpp"
#include "viennacl/tools/tools.hpp"
#include "viennacl/tools/entry_proxy.hpp"
#ifdef VIENNACL_WITH_UBLAS
#include <boost/numeric/ublas/matrix_sparse.hpp>
#endif
namespace viennacl
{
namespace detail
{
/** @brief Implementation of the copy of a host-based sparse matrix to the device.
*
* See convenience copy() routines for type requirements of CPUMatrixT
*/
template<typename CPUMatrixT, typename NumericT, unsigned int AlignmentV>
void copy_impl(const CPUMatrixT & cpu_matrix,
compressed_matrix<NumericT, AlignmentV> & gpu_matrix,
vcl_size_t nonzeros)
{
assert( (gpu_matrix.size1() == 0 || viennacl::traits::size1(cpu_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
assert( (gpu_matrix.size2() == 0 || viennacl::traits::size2(cpu_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );
viennacl::backend::typesafe_host_array<unsigned int> row_buffer(gpu_matrix.handle1(), cpu_matrix.size1() + 1);
viennacl::backend::typesafe_host_array<unsigned int> col_buffer(gpu_matrix.handle2(), nonzeros);
std::vector<NumericT> elements(nonzeros);
vcl_size_t row_index = 0;
vcl_size_t data_index = 0;
for (typename CPUMatrixT::const_iterator1 row_it = cpu_matrix.begin1();
row_it != cpu_matrix.end1();
++row_it)
{
row_buffer.set(row_index, data_index);
++row_index;
for (typename CPUMatrixT::const_iterator2 col_it = row_it.begin();
col_it != row_it.end();
++col_it)
{
col_buffer.set(data_index, col_it.index2());
elements[data_index] = *col_it;
++data_index;
}
data_index = viennacl::tools::align_to_multiple<vcl_size_t>(data_index, AlignmentV); //take care of alignment
}
row_buffer.set(row_index, data_index);
gpu_matrix.set(row_buffer.get(),
col_buffer.get(),
&elements[0],
cpu_matrix.size1(),
cpu_matrix.size2(),
nonzeros);
}
}
//
// host to device:
//
//provide copy-operation:
/** @brief Copies a sparse matrix from the host to the OpenCL device (either GPU or multi-core CPU)
*
* There are some type requirements on the CPUMatrixT type (fulfilled by e.g. boost::numeric::ublas):
* - .size1() returns the number of rows
* - .size2() returns the number of columns
* - const_iterator1 is a type definition for an iterator along increasing row indices
* - const_iterator2 is a type definition for an iterator along increasing columns indices
* - The const_iterator1 type provides an iterator of type const_iterator2 via members .begin() and .end() that iterates along column indices in the current row.
* - The types const_iterator1 and const_iterator2 provide members functions .index1() and .index2() that return the current row and column indices respectively.
* - Dereferenciation of an object of type const_iterator2 returns the entry.
*
* @param cpu_matrix A sparse matrix on the host.
* @param gpu_matrix A compressed_matrix from ViennaCL
*/
template<typename CPUMatrixT, typename NumericT, unsigned int AlignmentV>
void copy(const CPUMatrixT & cpu_matrix,
compressed_matrix<NumericT, AlignmentV> & gpu_matrix )
{
if ( cpu_matrix.size1() > 0 && cpu_matrix.size2() > 0 )
{
//determine nonzeros:
vcl_size_t num_entries = 0;
for (typename CPUMatrixT::const_iterator1 row_it = cpu_matrix.begin1();
row_it != cpu_matrix.end1();
++row_it)
{
vcl_size_t entries_per_row = 0;
for (typename CPUMatrixT::const_iterator2 col_it = row_it.begin();
col_it != row_it.end();
++col_it)
{
++entries_per_row;
}
num_entries += viennacl::tools::align_to_multiple<vcl_size_t>(entries_per_row, AlignmentV);
}
if (num_entries == 0) //we copy an empty matrix
num_entries = 1;
//set up matrix entries:
viennacl::detail::copy_impl(cpu_matrix, gpu_matrix, num_entries);
}
}
//adapted for std::vector< std::map < > > argument:
/** @brief Copies a sparse square matrix in the std::vector< std::map < > > format to an OpenCL device. Use viennacl::tools::sparse_matrix_adapter for non-square matrices.
*
* @param cpu_matrix A sparse square matrix on the host using STL types
* @param gpu_matrix A compressed_matrix from ViennaCL
*/
template<typename SizeT, typename NumericT, unsigned int AlignmentV>
void copy(const std::vector< std::map<SizeT, NumericT> > & cpu_matrix,
compressed_matrix<NumericT, AlignmentV> & gpu_matrix )
{
vcl_size_t nonzeros = 0;
vcl_size_t max_col = 0;
for (vcl_size_t i=0; i<cpu_matrix.size(); ++i)
{
if (cpu_matrix[i].size() > 0)
nonzeros += ((cpu_matrix[i].size() - 1) / AlignmentV + 1) * AlignmentV;
if (cpu_matrix[i].size() > 0)
max_col = std::max<vcl_size_t>(max_col, (cpu_matrix[i].rbegin())->first);
}
viennacl::detail::copy_impl(tools::const_sparse_matrix_adapter<NumericT, SizeT>(cpu_matrix, cpu_matrix.size(), max_col + 1),
gpu_matrix,
nonzeros);
}
#ifdef VIENNACL_WITH_UBLAS
/** @brief Convenience routine for copying a sparse uBLAS matrix to a ViennaCL matrix.
*
* Optimization which copies the data directly from the internal uBLAS buffers.
*/
template<typename ScalarType, typename F, vcl_size_t IB, typename IA, typename TA>
void copy(const boost::numeric::ublas::compressed_matrix<ScalarType, F, IB, IA, TA> & ublas_matrix,
viennacl::compressed_matrix<ScalarType, 1> & gpu_matrix)
{
assert( (gpu_matrix.size1() == 0 || viennacl::traits::size1(ublas_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
assert( (gpu_matrix.size2() == 0 || viennacl::traits::size2(ublas_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );
//we just need to copy the CSR arrays:
viennacl::backend::typesafe_host_array<unsigned int> row_buffer(gpu_matrix.handle1(), ublas_matrix.size1() + 1);
for (vcl_size_t i=0; i<=ublas_matrix.size1(); ++i)
row_buffer.set(i, ublas_matrix.index1_data()[i]);
viennacl::backend::typesafe_host_array<unsigned int> col_buffer(gpu_matrix.handle2(), ublas_matrix.nnz());
for (vcl_size_t i=0; i<ublas_matrix.nnz(); ++i)
col_buffer.set(i, ublas_matrix.index2_data()[i]);
gpu_matrix.set(row_buffer.get(),
col_buffer.get(),
&(ublas_matrix.value_data()[0]),
ublas_matrix.size1(),
ublas_matrix.size2(),
ublas_matrix.nnz());
}
#endif
#ifdef VIENNACL_WITH_ARMADILLO
/** @brief Convenience routine for copying a sparse Armadillo matrix to a ViennaCL matrix.
*
* Since Armadillo uses a column-major format, while ViennaCL uses row-major, we need to transpose.
* This is done fairly efficiently working on the CSR arrays directly, rather than (slowly) building an STL matrix.
*/
template<typename NumericT, unsigned int AlignmentV>
void copy(arma::SpMat<NumericT> const & arma_matrix,
viennacl::compressed_matrix<NumericT, AlignmentV> & vcl_matrix)
{
assert( (vcl_matrix.size1() == 0 || static_cast<vcl_size_t>(arma_matrix.n_rows) == vcl_matrix.size1()) && bool("Size mismatch") );
assert( (vcl_matrix.size2() == 0 || static_cast<vcl_size_t>(arma_matrix.n_cols) == vcl_matrix.size2()) && bool("Size mismatch") );
viennacl::backend::typesafe_host_array<unsigned int> row_buffer(vcl_matrix.handle1(), arma_matrix.n_rows + 1);
viennacl::backend::typesafe_host_array<unsigned int> col_buffer(vcl_matrix.handle2(), arma_matrix.n_nonzero);
viennacl::backend::typesafe_host_array<NumericT > value_buffer(vcl_matrix.handle(), arma_matrix.n_nonzero);
// Step 1: Count number of nonzeros in each row
for (vcl_size_t col=0; col < static_cast<vcl_size_t>(arma_matrix.n_cols); ++col)
{
vcl_size_t col_begin = static_cast<vcl_size_t>(arma_matrix.col_ptrs[col]);
vcl_size_t col_end = static_cast<vcl_size_t>(arma_matrix.col_ptrs[col+1]);
for (vcl_size_t i = col_begin; i < col_end; ++i)
{
unsigned int row = arma_matrix.row_indices[i];
row_buffer.set(row, row_buffer[row] + 1);
}
}
// Step 2: Exclusive scan on row_buffer to obtain offsets
unsigned int offset = 0;
for (vcl_size_t i=0; i<row_buffer.size(); ++i)
{
unsigned int tmp = row_buffer[i];
row_buffer.set(i, offset);
offset += tmp;
}
// Step 3: Fill data
std::vector<unsigned int> row_offsets(arma_matrix.n_rows);
for (vcl_size_t col=0; col < static_cast<vcl_size_t>(arma_matrix.n_cols); ++col)
{
vcl_size_t col_begin = static_cast<vcl_size_t>(arma_matrix.col_ptrs[col]);
vcl_size_t col_end = static_cast<vcl_size_t>(arma_matrix.col_ptrs[col+1]);
for (vcl_size_t i = col_begin; i < col_end; ++i)
{
unsigned int row = arma_matrix.row_indices[i];
col_buffer.set(row_buffer[row] + row_offsets[row], col);
value_buffer.set(row_buffer[row] + row_offsets[row], arma_matrix.values[i]);
row_offsets[row] += 1;
}
}
vcl_matrix.set(row_buffer.get(), col_buffer.get(), reinterpret_cast<NumericT*>(value_buffer.get()),
arma_matrix.n_rows, arma_matrix.n_cols, arma_matrix.n_nonzero);
}
#endif
#ifdef VIENNACL_WITH_EIGEN
/** @brief Convenience routine for copying a sparse Eigen matrix to a ViennaCL matrix.
*
* Builds a temporary STL matrix. Patches for avoiding the temporary matrix welcome.
*/
template<typename NumericT, int flags, unsigned int AlignmentV>
void copy(const Eigen::SparseMatrix<NumericT, flags> & eigen_matrix,
compressed_matrix<NumericT, AlignmentV> & gpu_matrix)
{
assert( (gpu_matrix.size1() == 0 || static_cast<vcl_size_t>(eigen_matrix.rows()) == gpu_matrix.size1()) && bool("Size mismatch") );
assert( (gpu_matrix.size2() == 0 || static_cast<vcl_size_t>(eigen_matrix.cols()) == gpu_matrix.size2()) && bool("Size mismatch") );
std::vector< std::map<unsigned int, NumericT> > stl_matrix(eigen_matrix.rows());
for (int k=0; k < eigen_matrix.outerSize(); ++k)
for (typename Eigen::SparseMatrix<NumericT, flags>::InnerIterator it(eigen_matrix, k); it; ++it)
stl_matrix[it.row()][it.col()] = it.value();
copy(tools::const_sparse_matrix_adapter<NumericT>(stl_matrix, eigen_matrix.rows(), eigen_matrix.cols()), gpu_matrix);
}
#endif
#ifdef VIENNACL_WITH_MTL4
/** @brief Convenience routine for copying a sparse MTL4 matrix to a ViennaCL matrix.
*
* Builds a temporary STL matrix for the copy. Patches for avoiding the temporary matrix welcome.
*/
template<typename NumericT, unsigned int AlignmentV>
void copy(const mtl::compressed2D<NumericT> & cpu_matrix,
compressed_matrix<NumericT, AlignmentV> & gpu_matrix)
{
assert( (gpu_matrix.size1() == 0 || static_cast<vcl_size_t>(cpu_matrix.num_rows()) == gpu_matrix.size1()) && bool("Size mismatch") );
assert( (gpu_matrix.size2() == 0 || static_cast<vcl_size_t>(cpu_matrix.num_cols()) == gpu_matrix.size2()) && bool("Size mismatch") );
typedef mtl::compressed2D<NumericT> MatrixType;
std::vector< std::map<unsigned int, NumericT> > stl_matrix(cpu_matrix.num_rows());
using mtl::traits::range_generator;
using mtl::traits::range::min;
// Choose between row and column traversal
typedef typename min<range_generator<mtl::tag::row, MatrixType>,
range_generator<mtl::tag::col, MatrixType> >::type range_type;
range_type my_range;
// Type of outer cursor
typedef typename range_type::type c_type;
// Type of inner cursor
typedef typename mtl::traits::range_generator<mtl::tag::nz, c_type>::type ic_type;
// Define the property maps
typename mtl::traits::row<MatrixType>::type row(cpu_matrix);
typename mtl::traits::col<MatrixType>::type col(cpu_matrix);
typename mtl::traits::const_value<MatrixType>::type value(cpu_matrix);
// Now iterate over the matrix
for (c_type cursor(my_range.begin(cpu_matrix)), cend(my_range.end(cpu_matrix)); cursor != cend; ++cursor)
for (ic_type icursor(mtl::begin<mtl::tag::nz>(cursor)), icend(mtl::end<mtl::tag::nz>(cursor)); icursor != icend; ++icursor)
stl_matrix[row(*icursor)][col(*icursor)] = value(*icursor);
copy(tools::const_sparse_matrix_adapter<NumericT>(stl_matrix, cpu_matrix.num_rows(), cpu_matrix.num_cols()), gpu_matrix);
}
#endif
//
// device to host:
//
/** @brief Copies a sparse matrix from the OpenCL device (either GPU or multi-core CPU) to the host.
*
* There are two type requirements on the CPUMatrixT type (fulfilled by e.g. boost::numeric::ublas):
* - resize(rows, cols) A resize function to bring the matrix into the correct size
* - operator(i,j) Write new entries via the parenthesis operator
*
* @param gpu_matrix A compressed_matrix from ViennaCL
* @param cpu_matrix A sparse matrix on the host.
*/
template<typename CPUMatrixT, typename NumericT, unsigned int AlignmentV>
void copy(const compressed_matrix<NumericT, AlignmentV> & gpu_matrix,
CPUMatrixT & cpu_matrix )
{
assert( (viennacl::traits::size1(cpu_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
assert( (viennacl::traits::size2(cpu_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );
if ( gpu_matrix.size1() > 0 && gpu_matrix.size2() > 0 )
{
//get raw data from memory:
viennacl::backend::typesafe_host_array<unsigned int> row_buffer(gpu_matrix.handle1(), cpu_matrix.size1() + 1);
viennacl::backend::typesafe_host_array<unsigned int> col_buffer(gpu_matrix.handle2(), gpu_matrix.nnz());
std::vector<NumericT> elements(gpu_matrix.nnz());
//std::cout << "GPU->CPU, nonzeros: " << gpu_matrix.nnz() << std::endl;
viennacl::backend::memory_read(gpu_matrix.handle1(), 0, row_buffer.raw_size(), row_buffer.get());
viennacl::backend::memory_read(gpu_matrix.handle2(), 0, col_buffer.raw_size(), col_buffer.get());
viennacl::backend::memory_read(gpu_matrix.handle(), 0, sizeof(NumericT)* gpu_matrix.nnz(), &(elements[0]));
//fill the cpu_matrix:
vcl_size_t data_index = 0;
for (vcl_size_t row = 1; row <= gpu_matrix.size1(); ++row)
{
while (data_index < row_buffer[row])
{
if (col_buffer[data_index] >= gpu_matrix.size2())
{
std::cerr << "ViennaCL encountered invalid data at colbuffer[" << data_index << "]: " << col_buffer[data_index] << std::endl;
return;
}
if (std::fabs(elements[data_index]) > static_cast<NumericT>(0))
cpu_matrix(row-1, static_cast<vcl_size_t>(col_buffer[data_index])) = elements[data_index];
++data_index;
}
}
}
}
/** @brief Copies a sparse matrix from an OpenCL device to the host. The host type is the std::vector< std::map < > > format .
*
* @param gpu_matrix A compressed_matrix from ViennaCL
* @param cpu_matrix A sparse matrix on the host.
*/
template<typename NumericT, unsigned int AlignmentV>
void copy(const compressed_matrix<NumericT, AlignmentV> & gpu_matrix,
std::vector< std::map<unsigned int, NumericT> > & cpu_matrix)
{
assert( (cpu_matrix.size() == gpu_matrix.size1()) && bool("Size mismatch") );
tools::sparse_matrix_adapter<NumericT> temp(cpu_matrix, gpu_matrix.size1(), gpu_matrix.size2());
copy(gpu_matrix, temp);
}
#ifdef VIENNACL_WITH_UBLAS
/** @brief Convenience routine for copying a ViennaCL sparse matrix back to a sparse uBLAS matrix
*
* Directly populates the internal buffer of the uBLAS matrix, thus avoiding a temporary STL matrix.
*/
template<typename ScalarType, unsigned int AlignmentV, typename F, vcl_size_t IB, typename IA, typename TA>
void copy(viennacl::compressed_matrix<ScalarType, AlignmentV> const & gpu_matrix,
boost::numeric::ublas::compressed_matrix<ScalarType> & ublas_matrix)
{
assert( (viennacl::traits::size1(ublas_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
assert( (viennacl::traits::size2(ublas_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );
viennacl::backend::typesafe_host_array<unsigned int> row_buffer(gpu_matrix.handle1(), gpu_matrix.size1() + 1);
viennacl::backend::typesafe_host_array<unsigned int> col_buffer(gpu_matrix.handle2(), gpu_matrix.nnz());
viennacl::backend::memory_read(gpu_matrix.handle1(), 0, row_buffer.raw_size(), row_buffer.get());
viennacl::backend::memory_read(gpu_matrix.handle2(), 0, col_buffer.raw_size(), col_buffer.get());
ublas_matrix.clear();
ublas_matrix.reserve(gpu_matrix.nnz());
ublas_matrix.set_filled(gpu_matrix.size1() + 1, gpu_matrix.nnz());
for (vcl_size_t i=0; i<ublas_matrix.size1() + 1; ++i)
ublas_matrix.index1_data()[i] = row_buffer[i];
for (vcl_size_t i=0; i<ublas_matrix.nnz(); ++i)
ublas_matrix.index2_data()[i] = col_buffer[i];
viennacl::backend::memory_read(gpu_matrix.handle(), 0, sizeof(ScalarType) * gpu_matrix.nnz(), &(ublas_matrix.value_data()[0]));
}
#endif
#ifdef VIENNACL_WITH_ARMADILLO
/** @brief Convenience routine for copying a ViennaCL sparse matrix back to a sparse Armadillo matrix.
*
* Performance notice: Inserting the row-major data from the ViennaCL matrix to the column-major Armadillo-matrix is likely to be slow.
* However, since this operation is unlikely to be performance-critical, further optimizations are postponed.
*/
template<typename NumericT, unsigned int AlignmentV>
void copy(viennacl::compressed_matrix<NumericT, AlignmentV> & vcl_matrix,
arma::SpMat<NumericT> & arma_matrix)
{
assert( (static_cast<vcl_size_t>(arma_matrix.n_rows) == vcl_matrix.size1()) && bool("Size mismatch") );
assert( (static_cast<vcl_size_t>(arma_matrix.n_cols) == vcl_matrix.size2()) && bool("Size mismatch") );
if ( vcl_matrix.size1() > 0 && vcl_matrix.size2() > 0 )
{
//get raw data from memory:
viennacl::backend::typesafe_host_array<unsigned int> row_buffer(vcl_matrix.handle1(), vcl_matrix.size1() + 1);
viennacl::backend::typesafe_host_array<unsigned int> col_buffer(vcl_matrix.handle2(), vcl_matrix.nnz());
viennacl::backend::typesafe_host_array<NumericT> elements (vcl_matrix.handle(), vcl_matrix.nnz());
viennacl::backend::memory_read(vcl_matrix.handle1(), 0, row_buffer.raw_size(), row_buffer.get());
viennacl::backend::memory_read(vcl_matrix.handle2(), 0, col_buffer.raw_size(), col_buffer.get());
viennacl::backend::memory_read(vcl_matrix.handle(), 0, elements.raw_size(), elements.get());
arma_matrix.zeros();
vcl_size_t data_index = 0;
for (vcl_size_t row = 1; row <= vcl_matrix.size1(); ++row)
{
while (data_index < row_buffer[row])
{
assert(col_buffer[data_index] < vcl_matrix.size2() && bool("ViennaCL encountered invalid data at col_buffer"));
if (elements[data_index] != static_cast<NumericT>(0.0))
arma_matrix(row-1, col_buffer[data_index]) = elements[data_index];
++data_index;
}
}
}
}
#endif
#ifdef VIENNACL_WITH_EIGEN
/** @brief Convenience routine for copying a ViennaCL sparse matrix back to a sparse Eigen matrix */
template<typename NumericT, int flags, unsigned int AlignmentV>
void copy(compressed_matrix<NumericT, AlignmentV> & gpu_matrix,
Eigen::SparseMatrix<NumericT, flags> & eigen_matrix)
{
assert( (static_cast<vcl_size_t>(eigen_matrix.rows()) == gpu_matrix.size1()) && bool("Size mismatch") );
assert( (static_cast<vcl_size_t>(eigen_matrix.cols()) == gpu_matrix.size2()) && bool("Size mismatch") );
if ( gpu_matrix.size1() > 0 && gpu_matrix.size2() > 0 )
{
//get raw data from memory:
viennacl::backend::typesafe_host_array<unsigned int> row_buffer(gpu_matrix.handle1(), gpu_matrix.size1() + 1);
viennacl::backend::typesafe_host_array<unsigned int> col_buffer(gpu_matrix.handle2(), gpu_matrix.nnz());
std::vector<NumericT> elements(gpu_matrix.nnz());
viennacl::backend::memory_read(gpu_matrix.handle1(), 0, row_buffer.raw_size(), row_buffer.get());
viennacl::backend::memory_read(gpu_matrix.handle2(), 0, col_buffer.raw_size(), col_buffer.get());
viennacl::backend::memory_read(gpu_matrix.handle(), 0, sizeof(NumericT)* gpu_matrix.nnz(), &(elements[0]));
eigen_matrix.setZero();
vcl_size_t data_index = 0;
for (vcl_size_t row = 1; row <= gpu_matrix.size1(); ++row)
{
while (data_index < row_buffer[row])
{
assert(col_buffer[data_index] < gpu_matrix.size2() && bool("ViennaCL encountered invalid data at col_buffer"));
if (elements[data_index] != static_cast<NumericT>(0.0))
eigen_matrix.insert(row-1, col_buffer[data_index]) = elements[data_index];
++data_index;
}
}
}
}
#endif
#ifdef VIENNACL_WITH_MTL4
/** @brief Convenience routine for copying a ViennaCL sparse matrix back to a sparse MTL4 matrix */
template<typename NumericT, unsigned int AlignmentV>
void copy(compressed_matrix<NumericT, AlignmentV> & gpu_matrix,
mtl::compressed2D<NumericT> & mtl4_matrix)
{
assert( (static_cast<vcl_size_t>(mtl4_matrix.num_rows()) == gpu_matrix.size1()) && bool("Size mismatch") );
assert( (static_cast<vcl_size_t>(mtl4_matrix.num_cols()) == gpu_matrix.size2()) && bool("Size mismatch") );
if ( gpu_matrix.size1() > 0 && gpu_matrix.size2() > 0 )
{
//get raw data from memory:
viennacl::backend::typesafe_host_array<unsigned int> row_buffer(gpu_matrix.handle1(), gpu_matrix.size1() + 1);
viennacl::backend::typesafe_host_array<unsigned int> col_buffer(gpu_matrix.handle2(), gpu_matrix.nnz());
std::vector<NumericT> elements(gpu_matrix.nnz());
viennacl::backend::memory_read(gpu_matrix.handle1(), 0, row_buffer.raw_size(), row_buffer.get());
viennacl::backend::memory_read(gpu_matrix.handle2(), 0, col_buffer.raw_size(), col_buffer.get());
viennacl::backend::memory_read(gpu_matrix.handle(), 0, sizeof(NumericT)* gpu_matrix.nnz(), &(elements[0]));
//set_to_zero(mtl4_matrix);
//mtl4_matrix.change_dim(gpu_matrix.size1(), gpu_matrix.size2());
mtl::matrix::inserter< mtl::compressed2D<NumericT> > ins(mtl4_matrix);
vcl_size_t data_index = 0;
for (vcl_size_t row = 1; row <= gpu_matrix.size1(); ++row)
{
while (data_index < row_buffer[row])
{
assert(col_buffer[data_index] < gpu_matrix.size2() && bool("ViennaCL encountered invalid data at col_buffer"));
if (elements[data_index] != static_cast<NumericT>(0.0))
ins(row-1, col_buffer[data_index]) << typename mtl::Collection< mtl::compressed2D<NumericT> >::value_type(elements[data_index]);
++data_index;
}
}
}
}
#endif
//////////////////////// compressed_matrix //////////////////////////
/** @brief A sparse square matrix in compressed sparse rows format.
*
* @tparam NumericT The floating point type (either float or double, checked at compile time)
* @tparam AlignmentV The internal memory size for the entries in each row is given by (size()/AlignmentV + 1) * AlignmentV. AlignmentV must be a power of two. Best values or usually 4, 8 or 16, higher values are usually a waste of memory.
*/
template<class NumericT, unsigned int AlignmentV /* see VCLForwards.h */>
class compressed_matrix
{
public:
typedef viennacl::backend::mem_handle handle_type;
typedef scalar<typename viennacl::tools::CHECK_SCALAR_TEMPLATE_ARGUMENT<NumericT>::ResultType> value_type;
typedef vcl_size_t size_type;
/** @brief Default construction of a compressed matrix. No memory is allocated */
compressed_matrix() : rows_(0), cols_(0), nonzeros_(0), row_block_num_(0) {}
/** @brief Construction of a compressed matrix with the supplied number of rows and columns. If the number of nonzeros is positive, memory is allocated
*
* @param rows Number of rows
* @param cols Number of columns
* @param nonzeros Optional number of nonzeros for memory preallocation
* @param ctx Optional context in which the matrix is created (one out of multiple OpenCL contexts, CUDA, host)
*/
explicit compressed_matrix(vcl_size_t rows, vcl_size_t cols, vcl_size_t nonzeros = 0, viennacl::context ctx = viennacl::context())
: rows_(rows), cols_(cols), nonzeros_(nonzeros), row_block_num_(0)
{
row_buffer_.switch_active_handle_id(ctx.memory_type());
col_buffer_.switch_active_handle_id(ctx.memory_type());
elements_.switch_active_handle_id(ctx.memory_type());
row_blocks_.switch_active_handle_id(ctx.memory_type());
#ifdef VIENNACL_WITH_OPENCL
if (ctx.memory_type() == OPENCL_MEMORY)
{
row_buffer_.opencl_handle().context(ctx.opencl_context());
col_buffer_.opencl_handle().context(ctx.opencl_context());
elements_.opencl_handle().context(ctx.opencl_context());
row_blocks_.opencl_handle().context(ctx.opencl_context());
}
#endif
if (rows > 0)
{
viennacl::backend::memory_create(row_buffer_, viennacl::backend::typesafe_host_array<unsigned int>().element_size() * (rows + 1), ctx);
viennacl::vector_base<unsigned int> init_temporary(row_buffer_, size_type(rows+1), 0, 1);
init_temporary = viennacl::zero_vector<unsigned int>(size_type(rows+1), ctx);
}
if (nonzeros > 0)
{
viennacl::backend::memory_create(col_buffer_, viennacl::backend::typesafe_host_array<unsigned int>().element_size() * nonzeros, ctx);
viennacl::backend::memory_create(elements_, sizeof(NumericT) * nonzeros, ctx);
}
}
/** @brief Construction of a compressed matrix with the supplied number of rows and columns. If the number of nonzeros is positive, memory is allocated
*
* @param rows Number of rows
* @param cols Number of columns
* @param ctx Context in which to create the matrix
*/
explicit compressed_matrix(vcl_size_t rows, vcl_size_t cols, viennacl::context ctx)
: rows_(rows), cols_(cols), nonzeros_(0), row_block_num_(0)
{
row_buffer_.switch_active_handle_id(ctx.memory_type());
col_buffer_.switch_active_handle_id(ctx.memory_type());
elements_.switch_active_handle_id(ctx.memory_type());
row_blocks_.switch_active_handle_id(ctx.memory_type());
#ifdef VIENNACL_WITH_OPENCL
if (ctx.memory_type() == OPENCL_MEMORY)
{
row_buffer_.opencl_handle().context(ctx.opencl_context());
col_buffer_.opencl_handle().context(ctx.opencl_context());
elements_.opencl_handle().context(ctx.opencl_context());
row_blocks_.opencl_handle().context(ctx.opencl_context());
}
#endif
if (rows > 0)
{
viennacl::backend::memory_create(row_buffer_, viennacl::backend::typesafe_host_array<unsigned int>().element_size() * (rows + 1), ctx);
viennacl::vector_base<unsigned int> init_temporary(row_buffer_, size_type(rows+1), 0, 1);
init_temporary = viennacl::zero_vector<unsigned int>(size_type(rows+1), ctx);
}
}
/** @brief Creates an empty compressed_matrix, but sets the respective context information.
*
* This is useful if you want to want to populate e.g. a viennacl::compressed_matrix<> on the host with copy(), but the default backend is OpenCL.
*/
explicit compressed_matrix(viennacl::context ctx) : rows_(0), cols_(0), nonzeros_(0), row_block_num_(0)
{
row_buffer_.switch_active_handle_id(ctx.memory_type());
col_buffer_.switch_active_handle_id(ctx.memory_type());
elements_.switch_active_handle_id(ctx.memory_type());
row_blocks_.switch_active_handle_id(ctx.memory_type());
#ifdef VIENNACL_WITH_OPENCL
if (ctx.memory_type() == OPENCL_MEMORY)
{
row_buffer_.opencl_handle().context(ctx.opencl_context());
col_buffer_.opencl_handle().context(ctx.opencl_context());
elements_.opencl_handle().context(ctx.opencl_context());
row_blocks_.opencl_handle().context(ctx.opencl_context());
}
#endif
}
#ifdef VIENNACL_WITH_OPENCL
/** @brief Wraps existing OpenCL buffers holding the compressed sparse row information.
*
* @param mem_row_buffer A buffer consisting of unsigned integers (cl_uint) holding the entry points for each row (0-based indexing). (rows+1) elements, the last element being 'nonzeros'.
* @param mem_col_buffer A buffer consisting of unsigned integers (cl_uint) holding the column index for each nonzero entry as stored in 'mem_elements'.
* @param mem_elements A buffer holding the floating point numbers for nonzeros. OpenCL type of elements must match the template 'NumericT'.
* @param rows Number of rows in the matrix to be wrapped.
* @param cols Number of columns to be wrapped.
* @param nonzeros Number of nonzero entries in the matrix.
*/
explicit compressed_matrix(cl_mem mem_row_buffer, cl_mem mem_col_buffer, cl_mem mem_elements,
vcl_size_t rows, vcl_size_t cols, vcl_size_t nonzeros) :
rows_(rows), cols_(cols), nonzeros_(nonzeros), row_block_num_(0)
{
row_buffer_.switch_active_handle_id(viennacl::OPENCL_MEMORY);
row_buffer_.opencl_handle() = mem_row_buffer;
row_buffer_.opencl_handle().inc(); //prevents that the user-provided memory is deleted once the matrix object is destroyed.
row_buffer_.raw_size(sizeof(cl_uint) * (rows + 1));
col_buffer_.switch_active_handle_id(viennacl::OPENCL_MEMORY);
col_buffer_.opencl_handle() = mem_col_buffer;
col_buffer_.opencl_handle().inc(); //prevents that the user-provided memory is deleted once the matrix object is destroyed.
col_buffer_.raw_size(sizeof(cl_uint) * nonzeros);
elements_.switch_active_handle_id(viennacl::OPENCL_MEMORY);
elements_.opencl_handle() = mem_elements;
elements_.opencl_handle().inc(); //prevents that the user-provided memory is deleted once the matrix object is destroyed.
elements_.raw_size(sizeof(NumericT) * nonzeros);
//generate block information for CSR-adaptive:
generate_row_block_information();
}
#endif
/** @brief Assignment a compressed matrix from the product of two compressed_matrix objects (C = A * B). */
compressed_matrix(matrix_expression<const compressed_matrix, const compressed_matrix, op_prod> const & proxy)
: rows_(0), cols_(0), nonzeros_(0), row_block_num_(0)
{
viennacl::context ctx = viennacl::traits::context(proxy.lhs());
row_buffer_.switch_active_handle_id(ctx.memory_type());
col_buffer_.switch_active_handle_id(ctx.memory_type());
elements_.switch_active_handle_id(ctx.memory_type());
row_blocks_.switch_active_handle_id(ctx.memory_type());
#ifdef VIENNACL_WITH_OPENCL
if (ctx.memory_type() == OPENCL_MEMORY)
{
row_buffer_.opencl_handle().context(ctx.opencl_context());
col_buffer_.opencl_handle().context(ctx.opencl_context());
elements_.opencl_handle().context(ctx.opencl_context());
row_blocks_.opencl_handle().context(ctx.opencl_context());
}
#endif
viennacl::linalg::prod_impl(proxy.lhs(), proxy.rhs(), *this);
generate_row_block_information();
}
/** @brief Assignment a compressed matrix from possibly another memory domain. */
compressed_matrix & operator=(compressed_matrix const & other)
{
assert( (rows_ == 0 || rows_ == other.size1()) && bool("Size mismatch") );
assert( (cols_ == 0 || cols_ == other.size2()) && bool("Size mismatch") );
rows_ = other.size1();
cols_ = other.size2();
nonzeros_ = other.nnz();
row_block_num_ = other.row_block_num_;
viennacl::backend::typesafe_memory_copy<unsigned int>(other.row_buffer_, row_buffer_);
viennacl::backend::typesafe_memory_copy<unsigned int>(other.col_buffer_, col_buffer_);
viennacl::backend::typesafe_memory_copy<unsigned int>(other.row_blocks_, row_blocks_);
viennacl::backend::typesafe_memory_copy<NumericT>(other.elements_, elements_);
return *this;
}
/** @brief Assignment a compressed matrix from the product of two compressed_matrix objects (C = A * B). */
compressed_matrix & operator=(matrix_expression<const compressed_matrix, const compressed_matrix, op_prod> const & proxy)
{
assert( (rows_ == 0 || rows_ == proxy.lhs().size1()) && bool("Size mismatch") );
assert( (cols_ == 0 || cols_ == proxy.rhs().size2()) && bool("Size mismatch") );
viennacl::linalg::prod_impl(proxy.lhs(), proxy.rhs(), *this);
generate_row_block_information();
return *this;
}
/** @brief Sets the row, column and value arrays of the compressed matrix
*
* Type of row_jumper and col_buffer is 'unsigned int' for CUDA and OpenMP (host) backend, but *must* be cl_uint for OpenCL.
* The reason is that 'unsigned int' might have a different bit representation on the host than 'unsigned int' on the OpenCL device.
* cl_uint is guaranteed to have the correct bit representation for OpenCL devices.
*
* @param row_jumper Pointer to an array holding the indices of the first element of each row (starting with zero). E.g. row_jumper[10] returns the index of the first entry of the 11th row. The array length is 'cols + 1'
* @param col_buffer Pointer to an array holding the column index of each entry. The array length is 'nonzeros'
* @param elements Pointer to an array holding the entries of the sparse matrix. The array length is 'elements'
* @param rows Number of rows of the sparse matrix
* @param cols Number of columns of the sparse matrix
* @param nonzeros Number of nonzeros
*/
void set(const void * row_jumper,
const void * col_buffer,
const NumericT * elements,
vcl_size_t rows,
vcl_size_t cols,
vcl_size_t nonzeros)
{
assert( (rows > 0) && bool("Error in compressed_matrix::set(): Number of rows must be larger than zero!"));
assert( (cols > 0) && bool("Error in compressed_matrix::set(): Number of columns must be larger than zero!"));
assert( (nonzeros > 0) && bool("Error in compressed_matrix::set(): Number of nonzeros must be larger than zero!"));
//std::cout << "Setting memory: " << cols + 1 << ", " << nonzeros << std::endl;
//row_buffer_.switch_active_handle_id(viennacl::backend::OPENCL_MEMORY);
viennacl::backend::memory_create(row_buffer_, viennacl::backend::typesafe_host_array<unsigned int>(row_buffer_).element_size() * (rows + 1), viennacl::traits::context(row_buffer_), row_jumper);
//col_buffer_.switch_active_handle_id(viennacl::backend::OPENCL_MEMORY);
viennacl::backend::memory_create(col_buffer_, viennacl::backend::typesafe_host_array<unsigned int>(col_buffer_).element_size() * nonzeros, viennacl::traits::context(col_buffer_), col_buffer);
//elements_.switch_active_handle_id(viennacl::backend::OPENCL_MEMORY);
viennacl::backend::memory_create(elements_, sizeof(NumericT) * nonzeros, viennacl::traits::context(elements_), elements);
nonzeros_ = nonzeros;
rows_ = rows;
cols_ = cols;
//generate block information for CSR-adaptive:
generate_row_block_information();
}
/** @brief Allocate memory for the supplied number of nonzeros in the matrix. Old values are preserved. */
void reserve(vcl_size_t new_nonzeros, bool preserve = true)
{
if (new_nonzeros > nonzeros_)
{
if (preserve)
{
handle_type col_buffer_old;
handle_type elements_old;
viennacl::backend::memory_shallow_copy(col_buffer_, col_buffer_old);
viennacl::backend::memory_shallow_copy(elements_, elements_old);
viennacl::backend::typesafe_host_array<unsigned int> size_deducer(col_buffer_);
viennacl::backend::memory_create(col_buffer_, size_deducer.element_size() * new_nonzeros, viennacl::traits::context(col_buffer_));
viennacl::backend::memory_create(elements_, sizeof(NumericT) * new_nonzeros, viennacl::traits::context(elements_));
viennacl::backend::memory_copy(col_buffer_old, col_buffer_, 0, 0, size_deducer.element_size() * nonzeros_);
viennacl::backend::memory_copy(elements_old, elements_, 0, 0, sizeof(NumericT)* nonzeros_);
}
else
{
viennacl::backend::typesafe_host_array<unsigned int> size_deducer(col_buffer_);
viennacl::backend::memory_create(col_buffer_, size_deducer.element_size() * new_nonzeros, viennacl::traits::context(col_buffer_));
viennacl::backend::memory_create(elements_, sizeof(NumericT) * new_nonzeros, viennacl::traits::context(elements_));
}
nonzeros_ = new_nonzeros;
}
}
/** @brief Resize the matrix.
*
* @param new_size1 New number of rows
* @param new_size2 New number of columns
* @param preserve If true, the old values are preserved. At present, old values are always discarded.
*/
void resize(vcl_size_t new_size1, vcl_size_t new_size2, bool preserve = true)
{
assert(new_size1 > 0 && new_size2 > 0 && bool("Cannot resize to zero size!"));
if (new_size1 != rows_ || new_size2 != cols_)
{
if (!preserve)
{
viennacl::backend::typesafe_host_array<unsigned int> host_row_buffer(row_buffer_, new_size1 + 1);
viennacl::backend::memory_create(row_buffer_, viennacl::backend::typesafe_host_array<unsigned int>().element_size() * (new_size1 + 1), viennacl::traits::context(row_buffer_), host_row_buffer.get());
// faster version without initializing memory:
//viennacl::backend::memory_create(row_buffer_, viennacl::backend::typesafe_host_array<unsigned int>().element_size() * (new_size1 + 1), viennacl::traits::context(row_buffer_));
nonzeros_ = 0;
}
else
{
std::vector<std::map<unsigned int, NumericT> > stl_sparse_matrix;
if (rows_ > 0)
{
stl_sparse_matrix.resize(rows_);
viennacl::copy(*this, stl_sparse_matrix);
} else {
stl_sparse_matrix.resize(new_size1);
stl_sparse_matrix[0][0] = 0; //enforces nonzero array sizes if matrix was initially empty
}
stl_sparse_matrix.resize(new_size1);
//discard entries with column index larger than new_size2
if (new_size2 < cols_ && rows_ > 0)
{
for (vcl_size_t i=0; i<stl_sparse_matrix.size(); ++i)
{
std::list<unsigned int> to_delete;
for (typename std::map<unsigned int, NumericT>::iterator it = stl_sparse_matrix[i].begin();
it != stl_sparse_matrix[i].end();
++it)
{
if (it->first >= new_size2)
to_delete.push_back(it->first);
}
for (std::list<unsigned int>::iterator it = to_delete.begin(); it != to_delete.end(); ++it)
stl_sparse_matrix[i].erase(*it);
}
}
viennacl::tools::sparse_matrix_adapter<NumericT> adapted_matrix(stl_sparse_matrix, new_size1, new_size2);
rows_ = new_size1;
cols_ = new_size2;
viennacl::copy(adapted_matrix, *this);
}
rows_ = new_size1;
cols_ = new_size2;
}
}
/** @brief Resets all entries in the matrix back to zero without changing the matrix size. Resets the sparsity pattern. */
void clear()
{
viennacl::backend::typesafe_host_array<unsigned int> host_row_buffer(row_buffer_, rows_ + 1);
viennacl::backend::typesafe_host_array<unsigned int> host_col_buffer(col_buffer_, 1);
std::vector<NumericT> host_elements(1);
viennacl::backend::memory_create(row_buffer_, host_row_buffer.element_size() * (rows_ + 1), viennacl::traits::context(row_buffer_), host_row_buffer.get());
viennacl::backend::memory_create(col_buffer_, host_col_buffer.element_size() * 1, viennacl::traits::context(col_buffer_), host_col_buffer.get());
viennacl::backend::memory_create(elements_, sizeof(NumericT) * 1, viennacl::traits::context(elements_), &(host_elements[0]));
nonzeros_ = 0;
}
/** @brief Returns a reference to the (i,j)-th entry of the sparse matrix. If (i,j) does not exist (zero), it is inserted (slow!) */
entry_proxy<NumericT> operator()(vcl_size_t i, vcl_size_t j)
{
assert( (i < rows_) && (j < cols_) && bool("compressed_matrix access out of bounds!"));
vcl_size_t index = element_index(i, j);
// check for element in sparsity pattern
if (index < nonzeros_)
return entry_proxy<NumericT>(index, elements_);
// Element not found. Copying required. Very slow, but direct entry manipulation is painful anyway...
std::vector< std::map<unsigned int, NumericT> > cpu_backup(rows_);
tools::sparse_matrix_adapter<NumericT> adapted_cpu_backup(cpu_backup, rows_, cols_);
viennacl::copy(*this, adapted_cpu_backup);
cpu_backup[i][static_cast<unsigned int>(j)] = 0.0;
viennacl::copy(adapted_cpu_backup, *this);
index = element_index(i, j);
assert(index < nonzeros_);
return entry_proxy<NumericT>(index, elements_);
}
/** @brief Returns the number of rows */
const vcl_size_t & size1() const { return rows_; }
/** @brief Returns the number of columns */
const vcl_size_t & size2() const { return cols_; }
/** @brief Returns the number of nonzero entries */
const vcl_size_t & nnz() const { return nonzeros_; }
/** @brief Returns the internal number of row blocks for an adaptive SpMV */
const vcl_size_t & blocks1() const { return row_block_num_; }
/** @brief Returns the OpenCL handle to the row index array */
const handle_type & handle1() const { return row_buffer_; }
/** @brief Returns the OpenCL handle to the column index array */
const handle_type & handle2() const { return col_buffer_; }
/** @brief Returns the OpenCL handle to the row block array */
const handle_type & handle3() const { return row_blocks_; }
/** @brief Returns the OpenCL handle to the matrix entry array */
const handle_type & handle() const { return elements_; }
/** @brief Returns the OpenCL handle to the row index array */
handle_type & handle1() { return row_buffer_; }
/** @brief Returns the OpenCL handle to the column index array */
handle_type & handle2() { return col_buffer_; }
/** @brief Returns the OpenCL handle to the row block array */
handle_type & handle3() { return row_blocks_; }
/** @brief Returns the OpenCL handle to the matrix entry array */
handle_type & handle() { return elements_; }
/** @brief Switches the memory context of the matrix.
*
* Allows for e.g. an migration of the full matrix from OpenCL memory to host memory for e.g. computing a preconditioner.
*/
void switch_memory_context(viennacl::context new_ctx)
{
viennacl::backend::switch_memory_context<unsigned int>(row_buffer_, new_ctx);
viennacl::backend::switch_memory_context<unsigned int>(col_buffer_, new_ctx);
viennacl::backend::switch_memory_context<unsigned int>(row_blocks_, new_ctx);
viennacl::backend::switch_memory_context<NumericT>(elements_, new_ctx);
}
/** @brief Returns the current memory context to determine whether the matrix is set up for OpenMP, OpenCL, or CUDA. */
viennacl::memory_types memory_context() const
{
return row_buffer_.get_active_handle_id();
}
private:
/** @brief Helper function for accessing the element (i,j) of the matrix. */
vcl_size_t element_index(vcl_size_t i, vcl_size_t j)
{
//read row indices
viennacl::backend::typesafe_host_array<unsigned int> row_indices(row_buffer_, 2);
viennacl::backend::memory_read(row_buffer_, row_indices.element_size()*i, row_indices.element_size()*2, row_indices.get());
//get column indices for row i:
viennacl::backend::typesafe_host_array<unsigned int> col_indices(col_buffer_, row_indices[1] - row_indices[0]);
viennacl::backend::memory_read(col_buffer_, col_indices.element_size()*row_indices[0], row_indices.element_size()*col_indices.size(), col_indices.get());
for (vcl_size_t k=0; k<col_indices.size(); ++k)
{
if (col_indices[k] == j)
return row_indices[0] + k;
}
// if not found, return index past the end of the matrix (cf. matrix.end() in the spirit of the STL)
return nonzeros_;
}
public:
/** @brief Builds the row block information needed for fast sparse matrix-vector multiplications.
*
* Required when manually populating the memory buffers with values. Not necessary when using viennacl::copy() or .set()
*/
void generate_row_block_information()
{
viennacl::backend::typesafe_host_array<unsigned int> row_buffer(row_buffer_, rows_ + 1);
viennacl::backend::memory_read(row_buffer_, 0, row_buffer.raw_size(), row_buffer.get());
viennacl::backend::typesafe_host_array<unsigned int> row_blocks(row_buffer_, rows_ + 1);
vcl_size_t num_entries_in_current_batch = 0;
const vcl_size_t shared_mem_size = 1024; // number of column indices loaded to shared memory, number of floating point values loaded to shared memory
row_block_num_ = 0;
row_blocks.set(0, 0);
for (vcl_size_t i=0; i<rows_; ++i)
{
vcl_size_t entries_in_row = vcl_size_t(row_buffer[i+1]) - vcl_size_t(row_buffer[i]);
num_entries_in_current_batch += entries_in_row;
if (num_entries_in_current_batch > shared_mem_size)
{
vcl_size_t rows_in_batch = i - row_blocks[row_block_num_];
if (rows_in_batch > 0) // at least one full row is in the batch. Use current row in next batch.
row_blocks.set(++row_block_num_, i--);
else // row is larger than buffer in shared memory
row_blocks.set(++row_block_num_, i+1);
num_entries_in_current_batch = 0;
}
}
if (num_entries_in_current_batch > 0)
row_blocks.set(++row_block_num_, rows_);
if (row_block_num_ > 0) //matrix might be empty...
viennacl::backend::memory_create(row_blocks_,
row_blocks.element_size() * (row_block_num_ + 1),
viennacl::traits::context(row_buffer_), row_blocks.get());
}
private:
// /** @brief Copy constructor is by now not available. */
//compressed_matrix(compressed_matrix const &);
private:
vcl_size_t rows_;
vcl_size_t cols_;
vcl_size_t nonzeros_;
vcl_size_t row_block_num_;
handle_type row_buffer_;
handle_type row_blocks_;
handle_type col_buffer_;
handle_type elements_;
};
/** @brief Output stream support for compressed_matrix. Output format is same as MATLAB, Octave, or SciPy
*
* @param os STL output stream
* @param A The compressed matrix to be printed.
*/
template<typename NumericT, unsigned int AlignmentV>
std::ostream & operator<<(std::ostream & os, compressed_matrix<NumericT, AlignmentV> const & A)
{
std::vector<std::map<unsigned int, NumericT> > tmp(A.size1());
viennacl::copy(A, tmp);
os << "compressed_matrix of size (" << A.size1() << ", " << A.size2() << ") with " << A.nnz() << " nonzeros:" << std::endl;
for (vcl_size_t i=0; i<A.size1(); ++i)
{
for (typename std::map<unsigned int, NumericT>::const_iterator it = tmp[i].begin(); it != tmp[i].end(); ++it)
os << " (" << i << ", " << it->first << ")\t" << it->second << std::endl;
}
return os;
}
//
// Specify available operations:
//
/** \cond */
namespace linalg
{
namespace detail
{
// x = A * y
template<typename T, unsigned int A>
struct op_executor<vector_base<T>, op_assign, vector_expression<const compressed_matrix<T, A>, const vector_base<T>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const compressed_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
{
// check for the special case x = A * x
if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
{
viennacl::vector<T> temp(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
lhs = temp;
}
else
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), lhs, T(0));
}
};
template<typename T, unsigned int A>
struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const compressed_matrix<T, A>, const vector_base<T>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const compressed_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
{
// check for the special case x += A * x
if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
{
viennacl::vector<T> temp(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
lhs += temp;
}
else
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), lhs, T(1));
}
};
template<typename T, unsigned int A>
struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const compressed_matrix<T, A>, const vector_base<T>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const compressed_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
{
// check for the special case x -= A * x
if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
{
viennacl::vector<T> temp(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
lhs -= temp;
}
else
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(-1), lhs, T(1));
}
};
// x = A * vec_op
template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
struct op_executor<vector_base<T>, op_assign, vector_expression<const compressed_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const compressed_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
{
viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
viennacl::linalg::prod_impl(rhs.lhs(), temp, lhs);
}
};
// x = A * vec_op
template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const compressed_matrix<T, A>, vector_expression<const LHS, const RHS, OP>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const compressed_matrix<T, A>, vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
{
viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
viennacl::vector<T> temp_result(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
lhs += temp_result;
}
};
// x = A * vec_op
template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const compressed_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const compressed_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
{
viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
viennacl::vector<T> temp_result(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
lhs -= temp_result;
}
};
} // namespace detail
} // namespace linalg
/** \endcond */
}
#endif
|