/usr/include/viennacl/hyb_matrix.hpp is in libviennacl-dev 1.7.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 | #ifndef VIENNACL_HYB_MATRIX_HPP_
#define VIENNACL_HYB_MATRIX_HPP_
/* =========================================================================
Copyright (c) 2010-2016, Institute for Microelectronics,
Institute for Analysis and Scientific Computing,
TU Wien.
Portions of this software are copyright by UChicago Argonne, LLC.
-----------------
ViennaCL - The Vienna Computing Library
-----------------
Project Head: Karl Rupp rupp@iue.tuwien.ac.at
(A list of authors and contributors can be found in the manual)
License: MIT (X11), see file LICENSE in the base directory
============================================================================= */
/** @file viennacl/hyb_matrix.hpp
@brief Implementation of the hyb_matrix class
Contributed by Volodymyr Kysenko.
*/
#include "viennacl/forwards.h"
#include "viennacl/vector.hpp"
#include "viennacl/tools/tools.hpp"
#include "viennacl/linalg/sparse_matrix_operations.hpp"
namespace viennacl
{
/** @brief Sparse matrix class using a hybrid format composed of the ELL and CSR format for storing the nonzeros. */
template<typename NumericT, unsigned int AlignmentV /* see forwards.h for default argument */>
class hyb_matrix
{
public:
typedef viennacl::backend::mem_handle handle_type;
typedef scalar<typename viennacl::tools::CHECK_SCALAR_TEMPLATE_ARGUMENT<NumericT>::ResultType> value_type;
hyb_matrix() : csr_threshold_(NumericT(0.8)), rows_(0), cols_(0) {}
hyb_matrix(viennacl::context ctx) : csr_threshold_(NumericT(0.8)), rows_(0), cols_(0)
{
ell_coords_.switch_active_handle_id(ctx.memory_type());
ell_elements_.switch_active_handle_id(ctx.memory_type());
csr_rows_.switch_active_handle_id(ctx.memory_type());
csr_cols_.switch_active_handle_id(ctx.memory_type());
csr_elements_.switch_active_handle_id(ctx.memory_type());
#ifdef VIENNACL_WITH_OPENCL
if (ctx.memory_type() == OPENCL_MEMORY)
{
ell_coords_.opencl_handle().context(ctx.opencl_context());
ell_elements_.opencl_handle().context(ctx.opencl_context());
csr_rows_.opencl_handle().context(ctx.opencl_context());
csr_cols_.opencl_handle().context(ctx.opencl_context());
csr_elements_.opencl_handle().context(ctx.opencl_context());
}
#endif
}
/** @brief Resets all entries in the matrix back to zero without changing the matrix size. Resets the sparsity pattern. */
void clear()
{
// ELL part:
ellnnz_ = 0;
viennacl::backend::typesafe_host_array<unsigned int> host_coords_buffer(ell_coords_, internal_size1());
std::vector<NumericT> host_elements(internal_size1());
viennacl::backend::memory_create(ell_coords_, host_coords_buffer.element_size() * internal_size1(), viennacl::traits::context(ell_coords_), host_coords_buffer.get());
viennacl::backend::memory_create(ell_elements_, sizeof(NumericT) * internal_size1(), viennacl::traits::context(ell_elements_), &(host_elements[0]));
// CSR part:
csrnnz_ = 0;
viennacl::backend::typesafe_host_array<unsigned int> host_row_buffer(csr_rows_, rows_ + 1);
viennacl::backend::typesafe_host_array<unsigned int> host_col_buffer(csr_cols_, 1);
host_elements.resize(1);
viennacl::backend::memory_create(csr_rows_, host_row_buffer.element_size() * (rows_ + 1), viennacl::traits::context(csr_rows_), host_row_buffer.get());
viennacl::backend::memory_create(csr_cols_, host_col_buffer.element_size() * 1, viennacl::traits::context(csr_cols_), host_col_buffer.get());
viennacl::backend::memory_create(csr_elements_, sizeof(NumericT) * 1, viennacl::traits::context(csr_elements_), &(host_elements[0]));
}
NumericT csr_threshold() const { return csr_threshold_; }
void csr_threshold(NumericT thr) { csr_threshold_ = thr; }
vcl_size_t internal_size1() const { return viennacl::tools::align_to_multiple<vcl_size_t>(rows_, AlignmentV); }
vcl_size_t internal_size2() const { return viennacl::tools::align_to_multiple<vcl_size_t>(cols_, AlignmentV); }
vcl_size_t size1() const { return rows_; }
vcl_size_t size2() const { return cols_; }
vcl_size_t internal_ellnnz() const {return viennacl::tools::align_to_multiple<vcl_size_t>(ellnnz_, AlignmentV); }
vcl_size_t ell_nnz() const { return ellnnz_; }
vcl_size_t csr_nnz() const { return csrnnz_; }
const handle_type & handle() const { return ell_elements_; }
const handle_type & handle2() const { return ell_coords_; }
const handle_type & handle3() const { return csr_rows_; }
const handle_type & handle4() const { return csr_cols_; }
const handle_type & handle5() const { return csr_elements_; }
public:
#if defined(_MSC_VER) && _MSC_VER < 1500 //Visual Studio 2005 needs special treatment
template<typename CPUMatrixT>
friend void copy(const CPUMatrixT & cpu_matrix, hyb_matrix & gpu_matrix );
#else
template<typename CPUMatrixT, typename T, unsigned int ALIGN>
friend void copy(const CPUMatrixT & cpu_matrix, hyb_matrix<T, ALIGN> & gpu_matrix );
#endif
private:
NumericT csr_threshold_;
vcl_size_t rows_;
vcl_size_t cols_;
vcl_size_t ellnnz_;
vcl_size_t csrnnz_;
handle_type ell_coords_; // ell coords
handle_type ell_elements_; // ell elements
handle_type csr_rows_;
handle_type csr_cols_;
handle_type csr_elements_;
};
template<typename CPUMatrixT, typename NumericT, unsigned int AlignmentV>
void copy(const CPUMatrixT& cpu_matrix, hyb_matrix<NumericT, AlignmentV>& gpu_matrix )
{
assert( (gpu_matrix.size1() == 0 || viennacl::traits::size1(cpu_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
assert( (gpu_matrix.size2() == 0 || viennacl::traits::size2(cpu_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );
if (cpu_matrix.size1() > 0 && cpu_matrix.size2() > 0)
{
//determine max capacity for row
vcl_size_t max_entries_per_row = 0;
std::vector<vcl_size_t> hist_entries(cpu_matrix.size2() + 1, 0);
for (typename CPUMatrixT::const_iterator1 row_it = cpu_matrix.begin1(); row_it != cpu_matrix.end1(); ++row_it)
{
vcl_size_t num_entries = 0;
for (typename CPUMatrixT::const_iterator2 col_it = row_it.begin(); col_it != row_it.end(); ++col_it)
{
++num_entries;
}
hist_entries[num_entries] += 1;
max_entries_per_row = std::max(max_entries_per_row, num_entries);
}
vcl_size_t sum = 0;
for (vcl_size_t ind = 0; ind <= max_entries_per_row; ind++)
{
sum += hist_entries[ind];
if (NumericT(sum) >= NumericT(gpu_matrix.csr_threshold()) * NumericT(cpu_matrix.size1()))
{
max_entries_per_row = ind;
break;
}
}
//setup GPU matrix
gpu_matrix.ellnnz_ = max_entries_per_row;
gpu_matrix.rows_ = cpu_matrix.size1();
gpu_matrix.cols_ = cpu_matrix.size2();
vcl_size_t nnz = gpu_matrix.internal_size1() * gpu_matrix.internal_ellnnz();
viennacl::backend::typesafe_host_array<unsigned int> ell_coords(gpu_matrix.ell_coords_, nnz);
viennacl::backend::typesafe_host_array<unsigned int> csr_rows(gpu_matrix.csr_rows_, cpu_matrix.size1() + 1);
std::vector<unsigned int> csr_cols;
std::vector<NumericT> ell_elements(nnz);
std::vector<NumericT> csr_elements;
vcl_size_t csr_index = 0;
for (typename CPUMatrixT::const_iterator1 row_it = cpu_matrix.begin1(); row_it != cpu_matrix.end1(); ++row_it)
{
vcl_size_t data_index = 0;
csr_rows.set(row_it.index1(), csr_index);
for (typename CPUMatrixT::const_iterator2 col_it = row_it.begin(); col_it != row_it.end(); ++col_it)
{
if (data_index < max_entries_per_row)
{
ell_coords.set(gpu_matrix.internal_size1() * data_index + col_it.index1(), col_it.index2());
ell_elements[gpu_matrix.internal_size1() * data_index + col_it.index1()] = *col_it;
}
else
{
csr_cols.push_back(static_cast<unsigned int>(col_it.index2()));
csr_elements.push_back(*col_it);
csr_index++;
}
data_index++;
}
}
if (csr_cols.empty())
{
csr_cols.push_back(0);
csr_elements.push_back(0);
}
csr_rows.set(csr_rows.size() - 1, csr_index);
gpu_matrix.csrnnz_ = csr_cols.size();
viennacl::backend::typesafe_host_array<unsigned int> csr_cols_for_gpu(gpu_matrix.csr_cols_, csr_cols.size());
for (vcl_size_t i=0; i<csr_cols.size(); ++i)
csr_cols_for_gpu.set(i, csr_cols[i]);
viennacl::backend::memory_create(gpu_matrix.ell_coords_, ell_coords.raw_size(), traits::context(gpu_matrix.ell_coords_), ell_coords.get());
viennacl::backend::memory_create(gpu_matrix.ell_elements_, sizeof(NumericT) * ell_elements.size(), traits::context(gpu_matrix.ell_elements_), &(ell_elements[0]));
viennacl::backend::memory_create(gpu_matrix.csr_rows_, csr_rows.raw_size(), traits::context(gpu_matrix.csr_rows_), csr_rows.get());
viennacl::backend::memory_create(gpu_matrix.csr_cols_, csr_cols_for_gpu.raw_size(), traits::context(gpu_matrix.csr_cols_), csr_cols_for_gpu.get());
viennacl::backend::memory_create(gpu_matrix.csr_elements_, sizeof(NumericT) * csr_elements.size(), traits::context(gpu_matrix.csr_elements_), &(csr_elements[0]));
}
}
/** @brief Copies a sparse matrix from the host to the compute device. The host type is the std::vector< std::map < > > format .
*
* @param cpu_matrix A sparse matrix on the host composed of an STL vector and an STL map.
* @param gpu_matrix The sparse hyb_matrix from ViennaCL
*/
template<typename IndexT, typename NumericT, unsigned int AlignmentV>
void copy(std::vector< std::map<IndexT, NumericT> > const & cpu_matrix,
hyb_matrix<NumericT, AlignmentV> & gpu_matrix)
{
vcl_size_t max_col = 0;
for (vcl_size_t i=0; i<cpu_matrix.size(); ++i)
{
if (cpu_matrix[i].size() > 0)
max_col = std::max<vcl_size_t>(max_col, (cpu_matrix[i].rbegin())->first);
}
viennacl::copy(tools::const_sparse_matrix_adapter<NumericT, IndexT>(cpu_matrix, cpu_matrix.size(), max_col + 1), gpu_matrix);
}
template<typename CPUMatrixT, typename NumericT, unsigned int AlignmentV>
void copy(const hyb_matrix<NumericT, AlignmentV>& gpu_matrix, CPUMatrixT& cpu_matrix)
{
assert( (viennacl::traits::size1(cpu_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
assert( (viennacl::traits::size2(cpu_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );
if (gpu_matrix.size1() > 0 && gpu_matrix.size2() > 0)
{
std::vector<NumericT> ell_elements(gpu_matrix.internal_size1() * gpu_matrix.internal_ellnnz());
viennacl::backend::typesafe_host_array<unsigned int> ell_coords(gpu_matrix.handle2(), gpu_matrix.internal_size1() * gpu_matrix.internal_ellnnz());
std::vector<NumericT> csr_elements(gpu_matrix.csr_nnz());
viennacl::backend::typesafe_host_array<unsigned int> csr_rows(gpu_matrix.handle3(), gpu_matrix.size1() + 1);
viennacl::backend::typesafe_host_array<unsigned int> csr_cols(gpu_matrix.handle4(), gpu_matrix.csr_nnz());
viennacl::backend::memory_read(gpu_matrix.handle(), 0, sizeof(NumericT) * ell_elements.size(), &(ell_elements[0]));
viennacl::backend::memory_read(gpu_matrix.handle2(), 0, ell_coords.raw_size(), ell_coords.get());
viennacl::backend::memory_read(gpu_matrix.handle3(), 0, csr_rows.raw_size(), csr_rows.get());
viennacl::backend::memory_read(gpu_matrix.handle4(), 0, csr_cols.raw_size(), csr_cols.get());
viennacl::backend::memory_read(gpu_matrix.handle5(), 0, sizeof(NumericT) * csr_elements.size(), &(csr_elements[0]));
for (vcl_size_t row = 0; row < gpu_matrix.size1(); row++)
{
for (vcl_size_t ind = 0; ind < gpu_matrix.internal_ellnnz(); ind++)
{
vcl_size_t offset = gpu_matrix.internal_size1() * ind + row;
NumericT val = ell_elements[offset];
if (val <= 0 && val >= 0) // val == 0 without compiler warnings
continue;
if (ell_coords[offset] >= gpu_matrix.size2())
{
std::cerr << "ViennaCL encountered invalid data " << offset << " " << ind << " " << row << " " << ell_coords[offset] << " " << gpu_matrix.size2() << std::endl;
return;
}
cpu_matrix(row, ell_coords[offset]) = val;
}
for (vcl_size_t ind = csr_rows[row]; ind < csr_rows[row+1]; ind++)
{
NumericT val = csr_elements[ind];
if (val <= 0 && val >= 0) // val == 0 without compiler warnings
continue;
if (csr_cols[ind] >= gpu_matrix.size2())
{
std::cerr << "ViennaCL encountered invalid data " << std::endl;
return;
}
cpu_matrix(row, csr_cols[ind]) = val;
}
}
}
}
/** @brief Copies a sparse matrix from the compute device to the host. The host type is the std::vector< std::map < > > format .
*
* @param gpu_matrix The sparse hyb_matrix from ViennaCL
* @param cpu_matrix A sparse matrix on the host composed of an STL vector and an STL map.
*/
template<typename NumericT, unsigned int AlignmentV, typename IndexT>
void copy(const hyb_matrix<NumericT, AlignmentV> & gpu_matrix,
std::vector< std::map<IndexT, NumericT> > & cpu_matrix)
{
if (cpu_matrix.size() == 0)
cpu_matrix.resize(gpu_matrix.size1());
assert(cpu_matrix.size() == gpu_matrix.size1() && bool("Matrix dimension mismatch!"));
tools::sparse_matrix_adapter<NumericT, IndexT> temp(cpu_matrix, cpu_matrix.size(), gpu_matrix.size2());
viennacl::copy(gpu_matrix, temp);
}
//
// Specify available operations:
//
/** \cond */
namespace linalg
{
namespace detail
{
// x = A * y
template<typename T, unsigned int A>
struct op_executor<vector_base<T>, op_assign, vector_expression<const hyb_matrix<T, A>, const vector_base<T>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const hyb_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
{
// check for the special case x = A * x
if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
{
viennacl::vector<T> temp(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
lhs = temp;
}
else
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), lhs, T(0));
}
};
template<typename T, unsigned int A>
struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const hyb_matrix<T, A>, const vector_base<T>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const hyb_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
{
// check for the special case x += A * x
if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
{
viennacl::vector<T> temp(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
lhs += temp;
}
else
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), lhs, T(1));
}
};
template<typename T, unsigned int A>
struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const hyb_matrix<T, A>, const vector_base<T>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const hyb_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
{
// check for the special case x -= A * x
if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
{
viennacl::vector<T> temp(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
lhs -= temp;
}
else
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(-1), lhs, T(1));
}
};
// x = A * vec_op
template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
struct op_executor<vector_base<T>, op_assign, vector_expression<const hyb_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const hyb_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
{
viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
viennacl::linalg::prod_impl(rhs.lhs(), temp, lhs);
}
};
// x = A * vec_op
template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const hyb_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const hyb_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
{
viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
viennacl::vector<T> temp_result(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
lhs += temp_result;
}
};
// x = A * vec_op
template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const hyb_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const hyb_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
{
viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
viennacl::vector<T> temp_result(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
lhs -= temp_result;
}
};
} // namespace detail
} // namespace linalg
/** \endcond */
}
#endif
|