This file is indexed.

/usr/include/viennacl/hyb_matrix.hpp is in libviennacl-dev 1.7.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
#ifndef VIENNACL_HYB_MATRIX_HPP_
#define VIENNACL_HYB_MATRIX_HPP_

/* =========================================================================
   Copyright (c) 2010-2016, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */

/** @file viennacl/hyb_matrix.hpp
    @brief Implementation of the hyb_matrix class

    Contributed by Volodymyr Kysenko.
*/

#include "viennacl/forwards.h"
#include "viennacl/vector.hpp"

#include "viennacl/tools/tools.hpp"

#include "viennacl/linalg/sparse_matrix_operations.hpp"

namespace viennacl
{
/** @brief Sparse matrix class using a hybrid format composed of the ELL and CSR format for storing the nonzeros. */
template<typename NumericT, unsigned int AlignmentV  /* see forwards.h for default argument */>
class hyb_matrix
{
public:
  typedef viennacl::backend::mem_handle                                                              handle_type;
  typedef scalar<typename viennacl::tools::CHECK_SCALAR_TEMPLATE_ARGUMENT<NumericT>::ResultType>   value_type;

  hyb_matrix() : csr_threshold_(NumericT(0.8)), rows_(0), cols_(0) {}

  hyb_matrix(viennacl::context ctx) : csr_threshold_(NumericT(0.8)), rows_(0), cols_(0)
  {
    ell_coords_.switch_active_handle_id(ctx.memory_type());
    ell_elements_.switch_active_handle_id(ctx.memory_type());

    csr_rows_.switch_active_handle_id(ctx.memory_type());
    csr_cols_.switch_active_handle_id(ctx.memory_type());
    csr_elements_.switch_active_handle_id(ctx.memory_type());

#ifdef VIENNACL_WITH_OPENCL
    if (ctx.memory_type() == OPENCL_MEMORY)
    {
      ell_coords_.opencl_handle().context(ctx.opencl_context());
      ell_elements_.opencl_handle().context(ctx.opencl_context());

      csr_rows_.opencl_handle().context(ctx.opencl_context());
      csr_cols_.opencl_handle().context(ctx.opencl_context());
      csr_elements_.opencl_handle().context(ctx.opencl_context());
    }
#endif
  }

  /** @brief Resets all entries in the matrix back to zero without changing the matrix size. Resets the sparsity pattern. */
  void clear()
  {
    // ELL part:
    ellnnz_ = 0;

    viennacl::backend::typesafe_host_array<unsigned int> host_coords_buffer(ell_coords_, internal_size1());
    std::vector<NumericT> host_elements(internal_size1());

    viennacl::backend::memory_create(ell_coords_,   host_coords_buffer.element_size() * internal_size1(), viennacl::traits::context(ell_coords_),   host_coords_buffer.get());
    viennacl::backend::memory_create(ell_elements_, sizeof(NumericT) * internal_size1(),                  viennacl::traits::context(ell_elements_), &(host_elements[0]));

    // CSR part:
    csrnnz_ = 0;

    viennacl::backend::typesafe_host_array<unsigned int> host_row_buffer(csr_rows_, rows_ + 1);
    viennacl::backend::typesafe_host_array<unsigned int> host_col_buffer(csr_cols_, 1);
    host_elements.resize(1);

    viennacl::backend::memory_create(csr_rows_,     host_row_buffer.element_size() * (rows_ + 1), viennacl::traits::context(csr_rows_),     host_row_buffer.get());
    viennacl::backend::memory_create(csr_cols_,     host_col_buffer.element_size() * 1,           viennacl::traits::context(csr_cols_),     host_col_buffer.get());
    viennacl::backend::memory_create(csr_elements_, sizeof(NumericT) * 1,                         viennacl::traits::context(csr_elements_), &(host_elements[0]));
  }

  NumericT  csr_threshold()  const { return csr_threshold_; }
  void csr_threshold(NumericT thr) { csr_threshold_ = thr; }

  vcl_size_t internal_size1() const { return viennacl::tools::align_to_multiple<vcl_size_t>(rows_, AlignmentV); }
  vcl_size_t internal_size2() const { return viennacl::tools::align_to_multiple<vcl_size_t>(cols_, AlignmentV); }

  vcl_size_t size1() const { return rows_; }
  vcl_size_t size2() const { return cols_; }

  vcl_size_t internal_ellnnz() const {return viennacl::tools::align_to_multiple<vcl_size_t>(ellnnz_, AlignmentV); }
  vcl_size_t ell_nnz() const { return ellnnz_; }
  vcl_size_t csr_nnz() const { return csrnnz_; }

  const handle_type & handle() const { return ell_elements_; }
  const handle_type & handle2() const { return ell_coords_; }
  const handle_type & handle3() const { return csr_rows_; }
  const handle_type & handle4() const { return csr_cols_; }
  const handle_type & handle5() const { return csr_elements_; }

public:
#if defined(_MSC_VER) && _MSC_VER < 1500          //Visual Studio 2005 needs special treatment
  template<typename CPUMatrixT>
  friend void copy(const CPUMatrixT & cpu_matrix, hyb_matrix & gpu_matrix );
#else
  template<typename CPUMatrixT, typename T, unsigned int ALIGN>
  friend void copy(const CPUMatrixT & cpu_matrix, hyb_matrix<T, ALIGN> & gpu_matrix );
#endif

private:
  NumericT  csr_threshold_;
  vcl_size_t rows_;
  vcl_size_t cols_;
  vcl_size_t ellnnz_;
  vcl_size_t csrnnz_;

  handle_type ell_coords_; // ell coords
  handle_type ell_elements_; // ell elements

  handle_type csr_rows_;
  handle_type csr_cols_;
  handle_type csr_elements_;
};

template<typename CPUMatrixT, typename NumericT, unsigned int AlignmentV>
void copy(const CPUMatrixT& cpu_matrix, hyb_matrix<NumericT, AlignmentV>& gpu_matrix )
{
  assert( (gpu_matrix.size1() == 0 || viennacl::traits::size1(cpu_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
  assert( (gpu_matrix.size2() == 0 || viennacl::traits::size2(cpu_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );

  if (cpu_matrix.size1() > 0 && cpu_matrix.size2() > 0)
  {
    //determine max capacity for row
    vcl_size_t max_entries_per_row = 0;
    std::vector<vcl_size_t> hist_entries(cpu_matrix.size2() + 1, 0);

    for (typename CPUMatrixT::const_iterator1 row_it = cpu_matrix.begin1(); row_it != cpu_matrix.end1(); ++row_it)
    {
      vcl_size_t num_entries = 0;
      for (typename CPUMatrixT::const_iterator2 col_it = row_it.begin(); col_it != row_it.end(); ++col_it)
      {
        ++num_entries;
      }

      hist_entries[num_entries] += 1;
      max_entries_per_row = std::max(max_entries_per_row, num_entries);
    }

    vcl_size_t sum = 0;
    for (vcl_size_t ind = 0; ind <= max_entries_per_row; ind++)
    {
      sum += hist_entries[ind];

      if (NumericT(sum) >= NumericT(gpu_matrix.csr_threshold()) * NumericT(cpu_matrix.size1()))
      {
        max_entries_per_row = ind;
        break;
      }
    }

    //setup GPU matrix
    gpu_matrix.ellnnz_ = max_entries_per_row;
    gpu_matrix.rows_ = cpu_matrix.size1();
    gpu_matrix.cols_ = cpu_matrix.size2();

    vcl_size_t nnz = gpu_matrix.internal_size1() * gpu_matrix.internal_ellnnz();

    viennacl::backend::typesafe_host_array<unsigned int>  ell_coords(gpu_matrix.ell_coords_, nnz);
    viennacl::backend::typesafe_host_array<unsigned int>  csr_rows(gpu_matrix.csr_rows_, cpu_matrix.size1() + 1);
    std::vector<unsigned int> csr_cols;

    std::vector<NumericT> ell_elements(nnz);
    std::vector<NumericT> csr_elements;

    vcl_size_t csr_index = 0;

    for (typename CPUMatrixT::const_iterator1 row_it = cpu_matrix.begin1(); row_it != cpu_matrix.end1(); ++row_it)
    {
      vcl_size_t data_index = 0;

      csr_rows.set(row_it.index1(), csr_index);

      for (typename CPUMatrixT::const_iterator2 col_it = row_it.begin(); col_it != row_it.end(); ++col_it)
      {
        if (data_index < max_entries_per_row)
        {
          ell_coords.set(gpu_matrix.internal_size1() * data_index + col_it.index1(), col_it.index2());
          ell_elements[gpu_matrix.internal_size1() * data_index + col_it.index1()] = *col_it;
        }
        else
        {
          csr_cols.push_back(static_cast<unsigned int>(col_it.index2()));
          csr_elements.push_back(*col_it);

          csr_index++;
        }

        data_index++;
      }

    }

    if (csr_cols.empty())
    {
      csr_cols.push_back(0);
      csr_elements.push_back(0);
    }

    csr_rows.set(csr_rows.size() - 1, csr_index);

    gpu_matrix.csrnnz_ = csr_cols.size();

    viennacl::backend::typesafe_host_array<unsigned int> csr_cols_for_gpu(gpu_matrix.csr_cols_, csr_cols.size());
    for (vcl_size_t i=0; i<csr_cols.size(); ++i)
      csr_cols_for_gpu.set(i, csr_cols[i]);

    viennacl::backend::memory_create(gpu_matrix.ell_coords_,   ell_coords.raw_size(),                    traits::context(gpu_matrix.ell_coords_), ell_coords.get());
    viennacl::backend::memory_create(gpu_matrix.ell_elements_, sizeof(NumericT) * ell_elements.size(), traits::context(gpu_matrix.ell_elements_), &(ell_elements[0]));

    viennacl::backend::memory_create(gpu_matrix.csr_rows_,     csr_rows.raw_size(),                      traits::context(gpu_matrix.csr_rows_), csr_rows.get());
    viennacl::backend::memory_create(gpu_matrix.csr_cols_,     csr_cols_for_gpu.raw_size(),              traits::context(gpu_matrix.csr_cols_), csr_cols_for_gpu.get());
    viennacl::backend::memory_create(gpu_matrix.csr_elements_, sizeof(NumericT) * csr_elements.size(), traits::context(gpu_matrix.csr_elements_), &(csr_elements[0]));
  }
}


/** @brief Copies a sparse matrix from the host to the compute device. The host type is the std::vector< std::map < > > format .
  *
  * @param cpu_matrix   A sparse matrix on the host composed of an STL vector and an STL map.
  * @param gpu_matrix   The sparse hyb_matrix from ViennaCL
  */
template<typename IndexT, typename NumericT, unsigned int AlignmentV>
void copy(std::vector< std::map<IndexT, NumericT> > const & cpu_matrix,
          hyb_matrix<NumericT, AlignmentV> & gpu_matrix)
{
  vcl_size_t max_col = 0;
  for (vcl_size_t i=0; i<cpu_matrix.size(); ++i)
  {
    if (cpu_matrix[i].size() > 0)
      max_col = std::max<vcl_size_t>(max_col, (cpu_matrix[i].rbegin())->first);
  }

  viennacl::copy(tools::const_sparse_matrix_adapter<NumericT, IndexT>(cpu_matrix, cpu_matrix.size(), max_col + 1), gpu_matrix);
}




template<typename CPUMatrixT, typename NumericT, unsigned int AlignmentV>
void copy(const hyb_matrix<NumericT, AlignmentV>& gpu_matrix, CPUMatrixT& cpu_matrix)
{
  assert( (viennacl::traits::size1(cpu_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
  assert( (viennacl::traits::size2(cpu_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );

  if (gpu_matrix.size1() > 0 && gpu_matrix.size2() > 0)
  {
    std::vector<NumericT> ell_elements(gpu_matrix.internal_size1() * gpu_matrix.internal_ellnnz());
    viennacl::backend::typesafe_host_array<unsigned int> ell_coords(gpu_matrix.handle2(), gpu_matrix.internal_size1() * gpu_matrix.internal_ellnnz());

    std::vector<NumericT> csr_elements(gpu_matrix.csr_nnz());
    viennacl::backend::typesafe_host_array<unsigned int> csr_rows(gpu_matrix.handle3(), gpu_matrix.size1() + 1);
    viennacl::backend::typesafe_host_array<unsigned int> csr_cols(gpu_matrix.handle4(), gpu_matrix.csr_nnz());

    viennacl::backend::memory_read(gpu_matrix.handle(), 0, sizeof(NumericT) * ell_elements.size(), &(ell_elements[0]));
    viennacl::backend::memory_read(gpu_matrix.handle2(), 0, ell_coords.raw_size(), ell_coords.get());
    viennacl::backend::memory_read(gpu_matrix.handle3(), 0, csr_rows.raw_size(),   csr_rows.get());
    viennacl::backend::memory_read(gpu_matrix.handle4(), 0, csr_cols.raw_size(),   csr_cols.get());
    viennacl::backend::memory_read(gpu_matrix.handle5(), 0, sizeof(NumericT) * csr_elements.size(), &(csr_elements[0]));


    for (vcl_size_t row = 0; row < gpu_matrix.size1(); row++)
    {
      for (vcl_size_t ind = 0; ind < gpu_matrix.internal_ellnnz(); ind++)
      {
        vcl_size_t offset = gpu_matrix.internal_size1() * ind + row;

        NumericT val = ell_elements[offset];
        if (val <= 0 && val >= 0) // val == 0 without compiler warnings
          continue;

        if (ell_coords[offset] >= gpu_matrix.size2())
        {
          std::cerr << "ViennaCL encountered invalid data " << offset << " " << ind << " " << row << " " << ell_coords[offset] << " " << gpu_matrix.size2() << std::endl;
          return;
        }

        cpu_matrix(row, ell_coords[offset]) = val;
      }

      for (vcl_size_t ind = csr_rows[row]; ind < csr_rows[row+1]; ind++)
      {
        NumericT val = csr_elements[ind];
        if (val <= 0 && val >= 0) // val == 0 without compiler warnings
          continue;

        if (csr_cols[ind] >= gpu_matrix.size2())
        {
          std::cerr << "ViennaCL encountered invalid data " << std::endl;
          return;
        }

        cpu_matrix(row, csr_cols[ind]) = val;
      }
    }
  }
}

/** @brief Copies a sparse matrix from the compute device to the host. The host type is the std::vector< std::map < > > format .
  *
  * @param gpu_matrix   The sparse hyb_matrix from ViennaCL
  * @param cpu_matrix   A sparse matrix on the host composed of an STL vector and an STL map.
  */
template<typename NumericT, unsigned int AlignmentV, typename IndexT>
void copy(const hyb_matrix<NumericT, AlignmentV> & gpu_matrix,
          std::vector< std::map<IndexT, NumericT> > & cpu_matrix)
{
  if (cpu_matrix.size() == 0)
    cpu_matrix.resize(gpu_matrix.size1());

  assert(cpu_matrix.size() == gpu_matrix.size1() && bool("Matrix dimension mismatch!"));

  tools::sparse_matrix_adapter<NumericT, IndexT> temp(cpu_matrix, cpu_matrix.size(), gpu_matrix.size2());
  viennacl::copy(gpu_matrix, temp);
}

//
// Specify available operations:
//

/** \cond */

namespace linalg
{
namespace detail
{
  // x = A * y
  template<typename T, unsigned int A>
  struct op_executor<vector_base<T>, op_assign, vector_expression<const hyb_matrix<T, A>, const vector_base<T>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const hyb_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
    {
      // check for the special case x = A * x
      if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
      {
        viennacl::vector<T> temp(lhs);
        viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
        lhs = temp;
      }
      else
        viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), lhs, T(0));
    }
  };

  template<typename T, unsigned int A>
  struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const hyb_matrix<T, A>, const vector_base<T>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const hyb_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
    {
      // check for the special case x += A * x
      if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
      {
        viennacl::vector<T> temp(lhs);
        viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
        lhs += temp;
      }
      else
        viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), lhs, T(1));
    }
  };

  template<typename T, unsigned int A>
  struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const hyb_matrix<T, A>, const vector_base<T>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const hyb_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
    {
      // check for the special case x -= A * x
      if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
      {
        viennacl::vector<T> temp(lhs);
        viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
        lhs -= temp;
      }
      else
        viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(-1), lhs, T(1));
    }
  };


  // x = A * vec_op
  template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
  struct op_executor<vector_base<T>, op_assign, vector_expression<const hyb_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const hyb_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
    {
      viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
      viennacl::linalg::prod_impl(rhs.lhs(), temp, lhs);
    }
  };

  // x = A * vec_op
  template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
  struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const hyb_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const hyb_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
    {
      viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
      viennacl::vector<T> temp_result(lhs);
      viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
      lhs += temp_result;
    }
  };

  // x = A * vec_op
  template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
  struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const hyb_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const hyb_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
    {
      viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
      viennacl::vector<T> temp_result(lhs);
      viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
      lhs -= temp_result;
    }
  };

} // namespace detail
} // namespace linalg

/** \endcond */
}

#endif