/usr/include/viennacl/linalg/bicgstab.hpp is in libviennacl-dev 1.7.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 | #ifndef VIENNACL_LINALG_BICGSTAB_HPP_
#define VIENNACL_LINALG_BICGSTAB_HPP_
/* =========================================================================
Copyright (c) 2010-2016, Institute for Microelectronics,
Institute for Analysis and Scientific Computing,
TU Wien.
Portions of this software are copyright by UChicago Argonne, LLC.
-----------------
ViennaCL - The Vienna Computing Library
-----------------
Project Head: Karl Rupp rupp@iue.tuwien.ac.at
(A list of authors and contributors can be found in the manual)
License: MIT (X11), see file LICENSE in the base directory
============================================================================= */
/** @file bicgstab.hpp
@brief The stabilized bi-conjugate gradient method is implemented here
*/
#include <vector>
#include <cmath>
#include <numeric>
#include "viennacl/forwards.h"
#include "viennacl/tools/tools.hpp"
#include "viennacl/linalg/prod.hpp"
#include "viennacl/linalg/inner_prod.hpp"
#include "viennacl/linalg/norm_2.hpp"
#include "viennacl/traits/clear.hpp"
#include "viennacl/traits/size.hpp"
#include "viennacl/traits/context.hpp"
#include "viennacl/meta/result_of.hpp"
#include "viennacl/linalg/iterative_operations.hpp"
namespace viennacl
{
namespace linalg
{
/** @brief A tag for the stabilized Bi-conjugate gradient solver. Used for supplying solver parameters and for dispatching the solve() function
*/
class bicgstab_tag
{
public:
/** @brief The constructor
*
* @param tol Relative tolerance for the residual (solver quits if ||r|| < tol * ||r_initial||)
* @param max_iters The maximum number of iterations
* @param max_iters_before_restart The maximum number of iterations before BiCGStab is reinitialized (to avoid accumulation of round-off errors)
*/
bicgstab_tag(double tol = 1e-8, vcl_size_t max_iters = 400, vcl_size_t max_iters_before_restart = 200)
: tol_(tol), abs_tol_(0), iterations_(max_iters), iterations_before_restart_(max_iters_before_restart) {}
/** @brief Returns the relative tolerance */
double tolerance() const { return tol_; }
/** @brief Returns the absolute tolerance */
double abs_tolerance() const { return abs_tol_; }
/** @brief Sets the absolute tolerance */
void abs_tolerance(double new_tol) { if (new_tol >= 0) abs_tol_ = new_tol; }
/** @brief Returns the maximum number of iterations */
vcl_size_t max_iterations() const { return iterations_; }
/** @brief Returns the maximum number of iterations before a restart*/
vcl_size_t max_iterations_before_restart() const { return iterations_before_restart_; }
/** @brief Return the number of solver iterations: */
vcl_size_t iters() const { return iters_taken_; }
void iters(vcl_size_t i) const { iters_taken_ = i; }
/** @brief Returns the estimated relative error at the end of the solver run */
double error() const { return last_error_; }
/** @brief Sets the estimated relative error at the end of the solver run */
void error(double e) const { last_error_ = e; }
private:
double tol_;
double abs_tol_;
vcl_size_t iterations_;
vcl_size_t iterations_before_restart_;
//return values from solver
mutable vcl_size_t iters_taken_;
mutable double last_error_;
};
namespace detail
{
/** @brief Implementation of a pipelined stabilized Bi-conjugate gradient solver */
template<typename MatrixT, typename NumericT>
viennacl::vector<NumericT> pipelined_solve(MatrixT const & A, //MatrixType const & A,
viennacl::vector_base<NumericT> const & rhs,
bicgstab_tag const & tag,
viennacl::linalg::no_precond,
bool (*monitor)(viennacl::vector<NumericT> const &, NumericT, void*) = NULL,
void *monitor_data = NULL)
{
viennacl::vector<NumericT> result = viennacl::zero_vector<NumericT>(rhs.size(), viennacl::traits::context(rhs));
viennacl::vector<NumericT> residual = rhs;
viennacl::vector<NumericT> p = rhs;
viennacl::vector<NumericT> r0star = rhs;
viennacl::vector<NumericT> Ap = rhs;
viennacl::vector<NumericT> s = rhs;
viennacl::vector<NumericT> As = rhs;
// Layout of temporary buffer:
// chunk 0: <residual, r_0^*>
// chunk 1: <As, As>
// chunk 2: <As, s>
// chunk 3: <Ap, r_0^*>
// chunk 4: <As, r_0^*>
// chunk 5: <s, s>
vcl_size_t buffer_size_per_vector = 256;
vcl_size_t num_buffer_chunks = 6;
viennacl::vector<NumericT> inner_prod_buffer = viennacl::zero_vector<NumericT>(num_buffer_chunks*buffer_size_per_vector, viennacl::traits::context(rhs)); // temporary buffer
std::vector<NumericT> host_inner_prod_buffer(inner_prod_buffer.size());
NumericT norm_rhs_host = viennacl::linalg::norm_2(residual);
NumericT beta;
NumericT alpha;
NumericT omega;
NumericT residual_norm = norm_rhs_host;
inner_prod_buffer[0] = norm_rhs_host * norm_rhs_host;
NumericT r_dot_r0 = 0;
NumericT As_dot_As = 0;
NumericT As_dot_s = 0;
NumericT Ap_dot_r0 = 0;
NumericT As_dot_r0 = 0;
NumericT s_dot_s = 0;
if (norm_rhs_host <= tag.abs_tolerance()) //solution is zero if RHS norm is zero
return result;
for (vcl_size_t i = 0; i < tag.max_iterations(); ++i)
{
tag.iters(i+1);
// Ap = A*p_j
// Ap_dot_r0 = <Ap, r_0^*>
viennacl::linalg::pipelined_bicgstab_prod(A, p, Ap, r0star,
inner_prod_buffer, buffer_size_per_vector, 3*buffer_size_per_vector);
//////// first (weak) synchronization point ////
///// method 1: compute alpha on host:
//
//// we only need the second chunk of the buffer for computing Ap_dot_r0:
//viennacl::fast_copy(inner_prod_buffer.begin(), inner_prod_buffer.end(), host_inner_prod_buffer.begin());
//Ap_dot_r0 = std::accumulate(host_inner_prod_buffer.begin() + buffer_size_per_vector, host_inner_prod_buffer.begin() + 2 * buffer_size_per_vector, ScalarType(0));
//alpha = residual_dot_r0 / Ap_dot_r0;
//// s_j = r_j - alpha_j q_j
//s = residual - alpha * Ap;
///// method 2: compute alpha on device:
// s = r - alpha * Ap
// <s, s> first stage
// dump alpha at end of inner_prod_buffer
viennacl::linalg::pipelined_bicgstab_update_s(s, residual, Ap,
inner_prod_buffer, buffer_size_per_vector, 5*buffer_size_per_vector);
// As = A*s_j
// As_dot_As = <As, As>
// As_dot_s = <As, s>
// As_dot_r0 = <As, r_0^*>
viennacl::linalg::pipelined_bicgstab_prod(A, s, As, r0star,
inner_prod_buffer, buffer_size_per_vector, 4*buffer_size_per_vector);
//////// second (strong) synchronization point ////
viennacl::fast_copy(inner_prod_buffer.begin(), inner_prod_buffer.end(), host_inner_prod_buffer.begin());
typedef typename std::vector<NumericT>::difference_type difference_type;
r_dot_r0 = std::accumulate(host_inner_prod_buffer.begin(), host_inner_prod_buffer.begin() + difference_type( buffer_size_per_vector), NumericT(0));
As_dot_As = std::accumulate(host_inner_prod_buffer.begin() + difference_type( buffer_size_per_vector), host_inner_prod_buffer.begin() + difference_type(2 * buffer_size_per_vector), NumericT(0));
As_dot_s = std::accumulate(host_inner_prod_buffer.begin() + difference_type(2 * buffer_size_per_vector), host_inner_prod_buffer.begin() + difference_type(3 * buffer_size_per_vector), NumericT(0));
Ap_dot_r0 = std::accumulate(host_inner_prod_buffer.begin() + difference_type(3 * buffer_size_per_vector), host_inner_prod_buffer.begin() + difference_type(4 * buffer_size_per_vector), NumericT(0));
As_dot_r0 = std::accumulate(host_inner_prod_buffer.begin() + difference_type(4 * buffer_size_per_vector), host_inner_prod_buffer.begin() + difference_type(5 * buffer_size_per_vector), NumericT(0));
s_dot_s = std::accumulate(host_inner_prod_buffer.begin() + difference_type(5 * buffer_size_per_vector), host_inner_prod_buffer.begin() + difference_type(6 * buffer_size_per_vector), NumericT(0));
alpha = r_dot_r0 / Ap_dot_r0;
beta = - As_dot_r0 / Ap_dot_r0;
omega = As_dot_s / As_dot_As;
residual_norm = std::sqrt(s_dot_s - NumericT(2.0) * omega * As_dot_s + omega * omega * As_dot_As);
if (monitor && monitor(result, std::fabs(residual_norm / norm_rhs_host), monitor_data))
break;
if (std::fabs(residual_norm / norm_rhs_host) < tag.tolerance() || residual_norm < tag.abs_tolerance())
break;
// x_{j+1} = x_j + alpha * p_j + omega * s_j
// r_{j+1} = s_j - omega * t_j
// p_{j+1} = r_{j+1} + beta * (p_j - omega * q_j)
// and compute first stage of r_dot_r0 = <r_{j+1}, r_o^*> for use in next iteration
viennacl::linalg::pipelined_bicgstab_vector_update(result, alpha, p, omega, s,
residual, As,
beta, Ap,
r0star, inner_prod_buffer, buffer_size_per_vector);
}
//store last error estimate:
tag.error(residual_norm / norm_rhs_host);
return result;
}
/** @brief Overload for the pipelined CG implementation for the ViennaCL sparse matrix types */
template<typename NumericT>
viennacl::vector<NumericT> solve_impl(viennacl::compressed_matrix<NumericT> const & A,
viennacl::vector<NumericT> const & rhs,
bicgstab_tag const & tag,
viennacl::linalg::no_precond,
bool (*monitor)(viennacl::vector<NumericT> const &, NumericT, void*) = NULL,
void *monitor_data = NULL)
{
return pipelined_solve(A, rhs, tag, viennacl::linalg::no_precond(), monitor, monitor_data);
}
/** @brief Overload for the pipelined CG implementation for the ViennaCL sparse matrix types */
template<typename NumericT>
viennacl::vector<NumericT> solve_impl(viennacl::coordinate_matrix<NumericT> const & A,
viennacl::vector<NumericT> const & rhs,
bicgstab_tag const & tag,
viennacl::linalg::no_precond,
bool (*monitor)(viennacl::vector<NumericT> const &, NumericT, void*) = NULL,
void *monitor_data = NULL)
{
return detail::pipelined_solve(A, rhs, tag, viennacl::linalg::no_precond(), monitor, monitor_data);
}
/** @brief Overload for the pipelined CG implementation for the ViennaCL sparse matrix types */
template<typename NumericT>
viennacl::vector<NumericT> solve_impl(viennacl::ell_matrix<NumericT> const & A,
viennacl::vector<NumericT> const & rhs,
bicgstab_tag const & tag,
viennacl::linalg::no_precond,
bool (*monitor)(viennacl::vector<NumericT> const &, NumericT, void*) = NULL,
void *monitor_data = NULL)
{
return detail::pipelined_solve(A, rhs, tag, viennacl::linalg::no_precond(), monitor, monitor_data);
}
/** @brief Overload for the pipelined CG implementation for the ViennaCL sparse matrix types */
template<typename NumericT>
viennacl::vector<NumericT> solve_impl(viennacl::sliced_ell_matrix<NumericT> const & A,
viennacl::vector<NumericT> const & rhs,
bicgstab_tag const & tag,
viennacl::linalg::no_precond,
bool (*monitor)(viennacl::vector<NumericT> const &, NumericT, void*) = NULL,
void *monitor_data = NULL)
{
return detail::pipelined_solve(A, rhs, tag, viennacl::linalg::no_precond(), monitor, monitor_data);
}
/** @brief Overload for the pipelined CG implementation for the ViennaCL sparse matrix types */
template<typename NumericT>
viennacl::vector<NumericT> solve_impl(viennacl::hyb_matrix<NumericT> const & A,
viennacl::vector<NumericT> const & rhs,
bicgstab_tag const & tag,
viennacl::linalg::no_precond,
bool (*monitor)(viennacl::vector<NumericT> const &, NumericT, void*) = NULL,
void *monitor_data = NULL)
{
return detail::pipelined_solve(A, rhs, tag, viennacl::linalg::no_precond(), monitor, monitor_data);
}
/** @brief Implementation of the unpreconditioned stabilized Bi-conjugate gradient solver
*
* Following the description in "Iterative Methods for Sparse Linear Systems" by Y. Saad
*
* @param matrix The system matrix
* @param rhs The load vector
* @param tag Solver configuration tag
* @param monitor A callback routine which is called at each GMRES restart
* @param monitor_data Data pointer to be passed to the callback routine to pass on user-specific data
* @return The result vector
*/
template<typename MatrixT, typename VectorT>
VectorT solve_impl(MatrixT const & matrix,
VectorT const & rhs,
bicgstab_tag const & tag,
viennacl::linalg::no_precond,
bool (*monitor)(VectorT const &, typename viennacl::result_of::cpu_value_type<typename viennacl::result_of::value_type<VectorT>::type>::type, void*) = NULL,
void *monitor_data = NULL)
{
typedef typename viennacl::result_of::value_type<VectorT>::type NumericType;
typedef typename viennacl::result_of::cpu_value_type<NumericType>::type CPU_NumericType;
VectorT result = rhs;
viennacl::traits::clear(result);
VectorT residual = rhs;
VectorT p = rhs;
VectorT r0star = rhs;
VectorT tmp0 = rhs;
VectorT tmp1 = rhs;
VectorT s = rhs;
CPU_NumericType norm_rhs_host = viennacl::linalg::norm_2(residual);
CPU_NumericType ip_rr0star = norm_rhs_host * norm_rhs_host;
CPU_NumericType beta;
CPU_NumericType alpha;
CPU_NumericType omega;
//ScalarType inner_prod_temp; //temporary variable for inner product computation
CPU_NumericType new_ip_rr0star = 0;
CPU_NumericType residual_norm = norm_rhs_host;
if (norm_rhs_host <= tag.abs_tolerance()) //solution is zero if RHS norm is zero
return result;
bool restart_flag = true;
vcl_size_t last_restart = 0;
for (vcl_size_t i = 0; i < tag.max_iterations(); ++i)
{
if (restart_flag)
{
residual = viennacl::linalg::prod(matrix, result);
residual = rhs - residual;
p = residual;
r0star = residual;
ip_rr0star = viennacl::linalg::norm_2(residual);
ip_rr0star *= ip_rr0star;
restart_flag = false;
last_restart = i;
}
tag.iters(i+1);
tmp0 = viennacl::linalg::prod(matrix, p);
alpha = ip_rr0star / viennacl::linalg::inner_prod(tmp0, r0star);
s = residual - alpha*tmp0;
tmp1 = viennacl::linalg::prod(matrix, s);
CPU_NumericType norm_tmp1 = viennacl::linalg::norm_2(tmp1);
omega = viennacl::linalg::inner_prod(tmp1, s) / (norm_tmp1 * norm_tmp1);
result += alpha * p + omega * s;
residual = s - omega * tmp1;
new_ip_rr0star = viennacl::linalg::inner_prod(residual, r0star);
residual_norm = viennacl::linalg::norm_2(residual);
if (monitor && monitor(result, std::fabs(residual_norm / norm_rhs_host), monitor_data))
break;
if (std::fabs(residual_norm / norm_rhs_host) < tag.tolerance() || residual_norm < tag.abs_tolerance())
break;
beta = new_ip_rr0star / ip_rr0star * alpha/omega;
ip_rr0star = new_ip_rr0star;
if ( (ip_rr0star <= 0 && ip_rr0star >= 0)
|| (omega <= 0 && omega >= 0)
|| (i - last_restart > tag.max_iterations_before_restart())
) //search direction degenerate. A restart might help
restart_flag = true;
// Execution of
// p = residual + beta * (p - omega*tmp0);
// without introducing temporary vectors:
p -= omega * tmp0;
p = residual + beta * p;
}
//store last error estimate:
tag.error(residual_norm / norm_rhs_host);
return result;
}
/** @brief Implementation of the preconditioned stabilized Bi-conjugate gradient solver
*
* Following the description of the unpreconditioned case in "Iterative Methods for Sparse Linear Systems" by Y. Saad
*
* @param matrix The system matrix
* @param rhs The load vector
* @param tag Solver configuration tag
* @param precond A preconditioner. Precondition operation is done via member function apply()
* @param monitor A callback routine which is called at each GMRES restart
* @param monitor_data Data pointer to be passed to the callback routine to pass on user-specific data
* @return The result vector
*/
template<typename MatrixT, typename VectorT, typename PreconditionerT>
VectorT solve_impl(MatrixT const & matrix,
VectorT const & rhs,
bicgstab_tag const & tag,
PreconditionerT const & precond,
bool (*monitor)(VectorT const &, typename viennacl::result_of::cpu_value_type<typename viennacl::result_of::value_type<VectorT>::type>::type, void*) = NULL,
void *monitor_data = NULL)
{
typedef typename viennacl::result_of::value_type<VectorT>::type NumericType;
typedef typename viennacl::result_of::cpu_value_type<NumericType>::type CPU_NumericType;
VectorT result = rhs;
viennacl::traits::clear(result);
VectorT residual = rhs;
VectorT r0star = residual; //can be chosen arbitrarily in fact
VectorT tmp0 = rhs;
VectorT tmp1 = rhs;
VectorT s = rhs;
VectorT p = residual;
CPU_NumericType ip_rr0star = viennacl::linalg::norm_2(residual);
CPU_NumericType norm_rhs_host = viennacl::linalg::norm_2(residual);
CPU_NumericType beta;
CPU_NumericType alpha;
CPU_NumericType omega;
CPU_NumericType new_ip_rr0star = 0;
CPU_NumericType residual_norm = norm_rhs_host;
if (norm_rhs_host <= tag.abs_tolerance()) //solution is zero if RHS norm is zero
return result;
bool restart_flag = true;
vcl_size_t last_restart = 0;
for (unsigned int i = 0; i < tag.max_iterations(); ++i)
{
if (restart_flag)
{
residual = viennacl::linalg::prod(matrix, result);
residual = rhs - residual;
precond.apply(residual);
p = residual;
r0star = residual;
ip_rr0star = viennacl::linalg::norm_2(residual);
ip_rr0star *= ip_rr0star;
restart_flag = false;
last_restart = i;
}
tag.iters(i+1);
tmp0 = viennacl::linalg::prod(matrix, p);
precond.apply(tmp0);
alpha = ip_rr0star / viennacl::linalg::inner_prod(tmp0, r0star);
s = residual - alpha*tmp0;
tmp1 = viennacl::linalg::prod(matrix, s);
precond.apply(tmp1);
CPU_NumericType norm_tmp1 = viennacl::linalg::norm_2(tmp1);
omega = viennacl::linalg::inner_prod(tmp1, s) / (norm_tmp1 * norm_tmp1);
result += alpha * p + omega * s;
residual = s - omega * tmp1;
residual_norm = viennacl::linalg::norm_2(residual);
if (monitor && monitor(result, std::fabs(residual_norm / norm_rhs_host), monitor_data))
break;
if (residual_norm / norm_rhs_host < tag.tolerance() || residual_norm < tag.abs_tolerance())
break;
new_ip_rr0star = viennacl::linalg::inner_prod(residual, r0star);
beta = new_ip_rr0star / ip_rr0star * alpha/omega;
ip_rr0star = new_ip_rr0star;
if ( (ip_rr0star >= 0 && ip_rr0star <= 0) || (omega >=0 && omega <= 0) || i - last_restart > tag.max_iterations_before_restart()) //search direction degenerate. A restart might help
restart_flag = true;
// Execution of
// p = residual + beta * (p - omega*tmp0);
// without introducing temporary vectors:
p -= omega * tmp0;
p = residual + beta * p;
//std::cout << "Rel. Residual in current step: " << std::sqrt(std::fabs(viennacl::linalg::inner_prod(residual, residual) / norm_rhs_host)) << std::endl;
}
//store last error estimate:
tag.error(residual_norm / norm_rhs_host);
return result;
}
}
template<typename MatrixT, typename VectorT, typename PreconditionerT>
VectorT solve(MatrixT const & matrix, VectorT const & rhs, bicgstab_tag const & tag, PreconditionerT const & precond)
{
return detail::solve_impl(matrix, rhs, tag, precond);
}
/** @brief Convenience overload for calling the preconditioned BiCGStab solver using types from the C++ STL.
*
* A std::vector<std::map<T, U> > matrix is convenient for e.g. finite element assembly.
* It is not the fastest option for setting up a system, but often it is fast enough - particularly for just trying things out.
*/
template<typename IndexT, typename NumericT, typename PreconditionerT>
std::vector<NumericT> solve(std::vector< std::map<IndexT, NumericT> > const & A, std::vector<NumericT> const & rhs, bicgstab_tag const & tag, PreconditionerT const & precond)
{
viennacl::compressed_matrix<NumericT> vcl_A;
viennacl::copy(A, vcl_A);
viennacl::vector<NumericT> vcl_rhs(rhs.size());
viennacl::copy(rhs, vcl_rhs);
viennacl::vector<NumericT> vcl_result = solve(vcl_A, vcl_rhs, tag, precond);
std::vector<NumericT> result(vcl_result.size());
viennacl::copy(vcl_result, result);
return result;
}
/** @brief Entry point for the unpreconditioned BiCGStab method.
*
* @param matrix The system matrix
* @param rhs Right hand side vector (load vector)
* @param tag A BiCGStab tag providing relative tolerances, etc.
*/
template<typename MatrixT, typename VectorT>
VectorT solve(MatrixT const & matrix, VectorT const & rhs, bicgstab_tag const & tag)
{
return solve(matrix, rhs, tag, viennacl::linalg::no_precond());
}
template<typename VectorT>
class bicgstab_solver
{
public:
typedef typename viennacl::result_of::cpu_value_type<VectorT>::type numeric_type;
bicgstab_solver(bicgstab_tag const & tag) : tag_(tag), monitor_callback_(NULL), user_data_(NULL) {}
template<typename MatrixT, typename PreconditionerT>
VectorT operator()(MatrixT const & A, VectorT const & b, PreconditionerT const & precond) const
{
if (viennacl::traits::size(init_guess_) > 0) // take initial guess into account
{
VectorT mod_rhs = viennacl::linalg::prod(A, init_guess_);
mod_rhs = b - mod_rhs;
VectorT y = detail::solve_impl(A, mod_rhs, tag_, precond, monitor_callback_, user_data_);
return init_guess_ + y;
}
return detail::solve_impl(A, b, tag_, precond, monitor_callback_, user_data_);
}
template<typename MatrixT>
VectorT operator()(MatrixT const & A, VectorT const & b) const
{
return operator()(A, b, viennacl::linalg::no_precond());
}
/** @brief Specifies an initial guess for the iterative solver.
*
* An iterative solver for Ax = b with initial guess x_0 is equivalent to an iterative solver for Ay = b' := b - Ax_0, where x = x_0 + y.
*/
void set_initial_guess(VectorT const & x) { init_guess_ = x; }
/** @brief Sets a monitor function pointer to be called in each iteration. Set to NULL to run without monitor.
*
* The monitor function is called with the current guess for the result as first argument and the current relative residual estimate as second argument.
* The third argument is a pointer to user-defined data, through which additional information can be passed.
* This pointer needs to be set with set_monitor_data. If not set, NULL is passed.
* If the montior function returns true, the solver terminates (either convergence or divergence).
*/
void set_monitor(bool (*monitor_fun)(VectorT const &, numeric_type, void *), void *user_data)
{
monitor_callback_ = monitor_fun;
user_data_ = user_data;
}
/** @brief Returns the solver tag containing basic configuration such as tolerances, etc. */
bicgstab_tag const & tag() const { return tag_; }
private:
bicgstab_tag tag_;
VectorT init_guess_;
bool (*monitor_callback_)(VectorT const &, numeric_type, void *);
void *user_data_;
};
}
}
#endif
|