This file is indexed.

/usr/include/viennacl/matrix_proxy.hpp is in libviennacl-dev 1.7.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
#ifndef VIENNACL_MATRIX_PROXY_HPP_
#define VIENNACL_MATRIX_PROXY_HPP_

/* =========================================================================
   Copyright (c) 2010-2016, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */

/** @file matrix_proxy.hpp
    @brief Proxy classes for matrices.
*/

#include "viennacl/forwards.h"
#include "viennacl/range.hpp"
#include "viennacl/slice.hpp"
#include "viennacl/detail/matrix_def.hpp"
#include "viennacl/traits/size.hpp"

namespace viennacl
{

namespace detail
{
  ///////// const access

  template<typename NumericT, typename MatrixT>
  NumericT const & matrix_access(MatrixT const & A, vcl_size_t i, vcl_size_t j)
  {
    return A(i, j);
  }

  template<typename NumericT>
  NumericT const & matrix_access(std::vector< std::vector<NumericT> > const & A, vcl_size_t i, vcl_size_t j)
  {
    return A[i][j];
  }

  //////// non-const access

  template<typename NumericT, typename MatrixT>
  NumericT & matrix_access(MatrixT & A, vcl_size_t i, vcl_size_t j)
  {
    return A(i, j);
  }

  template<typename NumericT>
  NumericT & matrix_access(std::vector< std::vector<NumericT> > & A, vcl_size_t i, vcl_size_t j)
  {
    return A[i][j];
  }

}

/** @brief Class for representing non-strided submatrices of a bigger matrix A.
  *
  * In MATLAB notation, this could for example refer to the submatrix A(3:8, 6:10) of a matrix A.
  */
template<typename MatrixType>
class matrix_range : public matrix_base<typename MatrixType::cpu_value_type>
{
  typedef matrix_base<typename MatrixType::cpu_value_type>    base_type;
  typedef matrix_range<MatrixType>                            self_type;

public:
  typedef typename MatrixType::value_type     value_type;
  typedef typename MatrixType::handle_type    handle_type;
  typedef typename viennacl::result_of::cpu_value_type<value_type>::type    cpu_value_type;
  typedef range::size_type                    size_type;
  typedef range::difference_type              difference_type;
  typedef value_type                          reference;
  typedef const value_type &                  const_reference;


  matrix_range(MatrixType const & A,
               range const & row_range,
               range const & col_range) : base_type(const_cast<handle_type &>(A.handle()),
                                                    row_range.size(), row_range.start() * A.stride1() + A.start1(), A.stride1(), A.internal_size1(),
                                                    col_range.size(), col_range.start() * A.stride2() + A.start2(), A.stride2(), A.internal_size2(),
                                                    A.row_major()) {}

  matrix_range(self_type const & A,
               range const & row_range,
               range const & col_range) : base_type(const_cast<handle_type &>(A.handle()),
                                                    row_range.size(), row_range.start() * A.stride1() + A.start1(), A.stride1(), A.internal_size1(),
                                                    col_range.size(), col_range.start() * A.stride2() + A.start2(), A.stride2(), A.internal_size2(),
                                                    A.row_major()) {}


  matrix_range(self_type const & other) : base_type(const_cast<handle_type &>(other.handle()),
                                                    other.size1(), other.start1(), other.stride1(), other.internal_size1(),
                                                    other.size2(), other.start2(), other.stride2(), other.internal_size2(),
                                                    other.row_major()) {}

  using base_type::operator=;

  // the following are needed for Visual Studio:
  template<typename OtherNumericT, typename F>
  base_type & operator=(viennacl::matrix<OtherNumericT, F> const & B)                          { return base_type::operator=(static_cast<viennacl::matrix_base<OtherNumericT> const &>(B)); }

  template<typename OtherNumericT, typename F>
  base_type & operator=(viennacl::matrix_range<viennacl::matrix<OtherNumericT, F> > const & B) { return base_type::operator=(static_cast<viennacl::matrix_base<OtherNumericT> const &>(B)); }

  template<typename OtherNumericT, typename F>
  base_type & operator=(viennacl::matrix_slice<viennacl::matrix<OtherNumericT, F> > const & B) { return base_type::operator=(static_cast<viennacl::matrix_base<OtherNumericT> const &>(B)); }
};

template<typename MatrixType>
class matrix_range<matrix_range<MatrixType> > : public matrix_base<typename MatrixType::cpu_value_type>
{
  typedef matrix_base<typename MatrixType::cpu_value_type>    base_type;
public:
  typedef typename MatrixType::handle_type    handle_type;

  matrix_range(MatrixType const & A,
               range const & row_range,
               range const & col_range) : base_type(const_cast<handle_type &>(A.handle()),
                                                    row_range.size(), row_range.start() * A.stride1() + A.start1(), A.stride1(), A.internal_size1(),
                                                    col_range.size(), col_range.start() * A.stride2() + A.start2(), A.stride2(), A.internal_size2(),
                                                    A.row_major()) {}

  matrix_range(matrix_range<MatrixType> const & A,
               range const & row_range,
               range const & col_range) : base_type(const_cast<handle_type &>(A.handle()),
                                                    row_range.size(), row_range.start() * A.stride1() + A.start1(), A.stride1(), A.internal_size1(),
                                                    col_range.size(), col_range.start() * A.stride2() + A.start2(), A.stride2(), A.internal_size2(),
                                                    A.row_major()) {}
};

/////////////////////////////////////////////////////////////
///////////////////////// CPU to GPU ////////////////////////
/////////////////////////////////////////////////////////////

//row_major:
template<typename CPUMatrixT, typename NumericT>
void copy(const CPUMatrixT & cpu_matrix,
          matrix_range<matrix<NumericT, row_major, 1> > & gpu_matrix_range )
{
  assert(    (viennacl::traits::size1(cpu_matrix) == gpu_matrix_range.size1())
          && (viennacl::traits::size2(cpu_matrix) == gpu_matrix_range.size2())
          && bool("Matrix size mismatch!"));

  if ( gpu_matrix_range.start2() != 0)
  {
    std::vector<NumericT> entries(gpu_matrix_range.size2());

    //copy each stride separately:
    for (vcl_size_t i=0; i < gpu_matrix_range.size1(); ++i)
    {
      for (vcl_size_t j=0; j < gpu_matrix_range.size2(); ++j)
        entries[j] = detail::matrix_access<NumericT>(cpu_matrix, i, j);

      vcl_size_t start_offset = (gpu_matrix_range.start1() + i) * gpu_matrix_range.internal_size2() + gpu_matrix_range.start2();
      vcl_size_t num_entries = gpu_matrix_range.size2();
      viennacl::backend::memory_write(gpu_matrix_range.handle(), sizeof(NumericT)*start_offset, sizeof(NumericT)*num_entries, &(entries[0]));
      //std::cout << "Strided copy worked!" << std::endl;
    }
  }
  else
  {
    //full block can be copied:
    std::vector<NumericT> entries(gpu_matrix_range.size1()*gpu_matrix_range.internal_size2());

    //copy each stride separately:
    for (vcl_size_t i=0; i < gpu_matrix_range.size1(); ++i)
      for (vcl_size_t j=0; j < gpu_matrix_range.size2(); ++j)
        entries[i*gpu_matrix_range.internal_size2() + j] = detail::matrix_access<NumericT>(cpu_matrix, i, j);

    vcl_size_t start_offset = gpu_matrix_range.start1() * gpu_matrix_range.internal_size2();
    vcl_size_t num_entries = gpu_matrix_range.size1() * gpu_matrix_range.internal_size2();
    viennacl::backend::memory_write(gpu_matrix_range.handle(), sizeof(NumericT)*start_offset, sizeof(NumericT)*num_entries, &(entries[0]));
    //std::cout << "Block copy worked!" << std::endl;
  }
}

//column_major:
template<typename CPUMatrixT, typename NumericT>
void copy(const CPUMatrixT & cpu_matrix,
          matrix_range<matrix<NumericT, column_major, 1> > & gpu_matrix_range )
{
  assert(    (viennacl::traits::size1(cpu_matrix) == gpu_matrix_range.size1())
          && (viennacl::traits::size2(cpu_matrix) == gpu_matrix_range.size2())
          && bool("Matrix size mismatch!"));

  if ( gpu_matrix_range.start1() != 0 ||  gpu_matrix_range.size1() != gpu_matrix_range.size1())
  {
    std::vector<NumericT> entries(gpu_matrix_range.size1());

    //copy each stride separately:
    for (vcl_size_t j=0; j < gpu_matrix_range.size2(); ++j)
    {
      for (vcl_size_t i=0; i < gpu_matrix_range.size1(); ++i)
        entries[i] = detail::matrix_access<NumericT>(cpu_matrix, i, j);

      vcl_size_t start_offset = (gpu_matrix_range.start2() + j) * gpu_matrix_range.internal_size1() + gpu_matrix_range.start1();
      vcl_size_t num_entries = gpu_matrix_range.size1();
      viennacl::backend::memory_write(gpu_matrix_range.handle(), sizeof(NumericT)*start_offset, sizeof(NumericT)*num_entries, &(entries[0]));
      //std::cout << "Strided copy worked!" << std::endl;
    }
  }
  else
  {
    //full block can be copied:
    std::vector<NumericT> entries(gpu_matrix_range.internal_size1()*gpu_matrix_range.size2());

    //copy each stride separately:
    for (vcl_size_t i=0; i < gpu_matrix_range.size1(); ++i)
      for (vcl_size_t j=0; j < gpu_matrix_range.size2(); ++j)
        entries[i + j*gpu_matrix_range.internal_size1()] = detail::matrix_access<NumericT>(cpu_matrix, i, j);

    vcl_size_t start_offset = gpu_matrix_range.start2() * gpu_matrix_range.internal_size1();
    vcl_size_t num_entries = gpu_matrix_range.internal_size1() * gpu_matrix_range.size2();
    viennacl::backend::memory_write(gpu_matrix_range.handle(), sizeof(NumericT)*start_offset, sizeof(NumericT)*num_entries, &(entries[0]));
    //std::cout << "Block copy worked!" << std::endl;
  }

}


/////////////////////////////////////////////////////////////
///////////////////////// GPU to CPU ////////////////////////
/////////////////////////////////////////////////////////////


//row_major:
template<typename CPUMatrixT, typename NumericT>
void copy(matrix_range<matrix<NumericT, row_major, 1> > const & gpu_matrix_range,
          CPUMatrixT & cpu_matrix)
{
  assert(    (viennacl::traits::size1(cpu_matrix) == gpu_matrix_range.size1())
          && (viennacl::traits::size2(cpu_matrix) == gpu_matrix_range.size2())
          && bool("Matrix size mismatch!"));

  if ( gpu_matrix_range.start2() != 0)
  {
    std::vector<NumericT> entries(gpu_matrix_range.size2());

    //copy each stride separately:
    for (vcl_size_t i=0; i < gpu_matrix_range.size1(); ++i)
    {
      vcl_size_t start_offset = (gpu_matrix_range.start1() + i) * gpu_matrix_range.internal_size2() + gpu_matrix_range.start2();
      vcl_size_t num_entries = gpu_matrix_range.size2();
      viennacl::backend::memory_read(gpu_matrix_range.handle(), sizeof(NumericT)*start_offset, sizeof(NumericT)*num_entries, &(entries[0]));
      //std::cout << "Strided copy worked!" << std::endl;

      for (vcl_size_t j=0; j < gpu_matrix_range.size2(); ++j)
        detail::matrix_access<NumericT>(cpu_matrix, i, j) = entries[j];
    }
  }
  else
  {
    //full block can be copied:
    std::vector<NumericT> entries(gpu_matrix_range.size1()*gpu_matrix_range.internal_size2());

    vcl_size_t start_offset = gpu_matrix_range.start1() * gpu_matrix_range.internal_size2();
    viennacl::backend::memory_read(gpu_matrix_range.handle(), sizeof(NumericT)*start_offset, sizeof(NumericT)*entries.size(), &(entries[0]));
    //std::cout << "Block copy worked!" << std::endl;

    for (vcl_size_t i=0; i < gpu_matrix_range.size1(); ++i)
      for (vcl_size_t j=0; j < gpu_matrix_range.size2(); ++j)
        detail::matrix_access<NumericT>(cpu_matrix, i, j) = entries[i*gpu_matrix_range.internal_size2() + j];
  }

}


//column_major:
template<typename CPUMatrixT, typename NumericT>
void copy(matrix_range<matrix<NumericT, column_major, 1> > const & gpu_matrix_range,
          CPUMatrixT & cpu_matrix)
{
  assert(    (viennacl::traits::size1(cpu_matrix) == gpu_matrix_range.size1())
          && (viennacl::traits::size2(cpu_matrix) == gpu_matrix_range.size2())
          && bool("Matrix size mismatch!"));

  if ( gpu_matrix_range.start1() != 0)
  {
    std::vector<NumericT> entries(gpu_matrix_range.size1());

    //copy each stride separately:
    for (vcl_size_t j=0; j < gpu_matrix_range.size2(); ++j)
    {
      vcl_size_t start_offset = (gpu_matrix_range.start2() + j) * gpu_matrix_range.internal_size1() + gpu_matrix_range.start1();
      vcl_size_t num_entries = gpu_matrix_range.size1();
      viennacl::backend::memory_read(gpu_matrix_range.handle(), sizeof(NumericT)*start_offset, sizeof(NumericT)*num_entries, &(entries[0]));
      //std::cout << "Strided copy worked!" << std::endl;

      for (vcl_size_t i=0; i < gpu_matrix_range.size1(); ++i)
        detail::matrix_access<NumericT>(cpu_matrix, i, j) = entries[i];
    }
  }
  else
  {
    //full block can be copied:
    std::vector<NumericT> entries(gpu_matrix_range.internal_size1()*gpu_matrix_range.size2());

    //copy each stride separately:
    vcl_size_t start_offset = gpu_matrix_range.start2() * gpu_matrix_range.internal_size1();
    vcl_size_t num_entries = gpu_matrix_range.internal_size1() * gpu_matrix_range.size2();
    viennacl::backend::memory_read(gpu_matrix_range.handle(), sizeof(NumericT)*start_offset, sizeof(NumericT)*num_entries, &(entries[0]));
    //std::cout << "Block copy worked!" << std::endl;

    for (vcl_size_t i=0; i < gpu_matrix_range.size1(); ++i)
      for (vcl_size_t j=0; j < gpu_matrix_range.size2(); ++j)
        detail::matrix_access<NumericT>(cpu_matrix, i, j) = entries[i + j*gpu_matrix_range.internal_size1()];
  }

}


//
// Convenience function
//
template<typename MatrixType>
matrix_range<MatrixType> project(MatrixType const & A, viennacl::range const & r1, viennacl::range const & r2)
{
  assert(r1.size() <= A.size1() && r2.size() <= A.size2() && bool("Size of range invalid!"));

  return matrix_range<MatrixType>(A, r1, r2);
}


template<typename MatrixType>
matrix_range<MatrixType> project(matrix_range<MatrixType> const & A, viennacl::range const & r1, viennacl::range const & r2)
{
  assert(r1.size() <= A.size1() && r2.size() <= A.size2() && bool("Size of range invalid!"));

  return matrix_range<MatrixType>(A, r1, r2);
}




//
//
//
/////////////////////////////// Slice /////////////////////////////////////////////
//
//
//





/** @brief Class for representing strided submatrices of a bigger matrix A.
  *
  * In MATLAB notation, this could for example refer to the submatrix A(3:2:8, 6:3:16) of a matrix A.
  */
template<typename MatrixType>
class matrix_slice : public matrix_base<typename MatrixType::cpu_value_type>
{
  typedef matrix_base<typename MatrixType::cpu_value_type>    base_type;
  typedef matrix_slice<MatrixType>                            self_type;

public:

  typedef typename MatrixType::value_type     value_type;
  typedef typename MatrixType::handle_type    handle_type;
  typedef typename viennacl::result_of::cpu_value_type<value_type>::type    cpu_value_type;
  typedef range::size_type                    size_type;
  typedef range::difference_type              difference_type;
  typedef value_type                          reference;
  typedef const value_type &                  const_reference;

  matrix_slice(MatrixType const & A,
               slice const & row_slice,
               slice const & col_slice) : base_type(const_cast<handle_type &>(A.handle()),
                                                    row_slice.size(), row_slice.start() * A.stride1() + A.start1(), row_slice.stride() * A.stride1(), A.internal_size1(),
                                                    col_slice.size(), col_slice.start() * A.stride2() + A.start2(), col_slice.stride() * A.stride2(), A.internal_size2(),
                                                    A.row_major()) {}

  matrix_slice(self_type const & A,
               slice const & row_slice,
               slice const & col_slice) : base_type(const_cast<handle_type &>(A.handle()),
                                                    row_slice.size(), row_slice.start() * A.stride1() + A.start1(), row_slice.stride() * A.stride1(), A.internal_size1(),
                                                    col_slice.size(), col_slice.start() * A.stride2() + A.start2(), col_slice.stride() * A.stride2(), A.internal_size2(),
                                                    A.row_major()) {}


  matrix_slice(self_type const & other) : base_type(const_cast<handle_type &>(other.handle()),
                                                    other.size1(), other.start1(), other.stride1(), other.internal_size1(),
                                                    other.size2(), other.start2(), other.stride2(), other.internal_size2(),
                                                    other.row_major()) {}

  using base_type::operator=;

  // the following are needed for Visual Studio:
  template<typename OtherNumericT, typename F>
  base_type & operator=(viennacl::matrix<OtherNumericT, F> const & B)                          { return base_type::operator=(static_cast<viennacl::matrix_base<OtherNumericT> const &>(B)); }

  template<typename OtherNumericT, typename F>
  base_type & operator=(viennacl::matrix_range<viennacl::matrix<OtherNumericT, F> > const & B) { return base_type::operator=(static_cast<viennacl::matrix_base<OtherNumericT> const &>(B)); }

  template<typename OtherNumericT, typename F>
  base_type & operator=(viennacl::matrix_slice<viennacl::matrix<OtherNumericT, F> > const & B) { return base_type::operator=(static_cast<viennacl::matrix_base<OtherNumericT> const &>(B)); }
};

template<typename MatrixType>
class matrix_slice<matrix_range<MatrixType> > : public matrix_base<typename MatrixType::cpu_value_type>
{
  typedef matrix_base<typename MatrixType::cpu_value_type>    base_type;
public:
  typedef typename MatrixType::handle_type    handle_type;

  matrix_slice(MatrixType const & A,
               slice const & row_slice,
               slice const & col_slice) : base_type(const_cast<handle_type &>(A.handle()),
                                                    row_slice.size(), row_slice.start() * A.stride1() + A.start1(), row_slice.stride() * A.stride1(), A.internal_size1(),
                                                    col_slice.size(), col_slice.start() * A.stride2() + A.start2(), col_slice.stride() * A.stride2(), A.internal_size2(),
                                                    A.row_major()) {}

  matrix_slice(matrix_slice<MatrixType> const & A,
               slice const & row_slice,
               slice const & col_slice) : base_type(const_cast<handle_type &>(A.handle()),
                                                    row_slice.size(), row_slice.start() * A.stride1() + A.start1(), row_slice.stride() * A.stride1(), A.internal_size1(),
                                                    col_slice.size(), col_slice.start() * A.stride2() + A.start2(), col_slice.stride() * A.stride2(), A.internal_size2(),
                                                    A.row_major()) {}
};


/////////////////////////////////////////////////////////////
///////////////////////// CPU to GPU ////////////////////////
/////////////////////////////////////////////////////////////

//row_major:
template<typename CPUMatrixT, typename NumericT>
void copy(const CPUMatrixT & cpu_matrix,
          matrix_slice<matrix<NumericT, row_major, 1> > & gpu_matrix_slice )
{
  assert(    (viennacl::traits::size1(cpu_matrix) == gpu_matrix_slice.size1())
          && (viennacl::traits::size2(cpu_matrix) == gpu_matrix_slice.size2())
          && bool("Matrix size mismatch!"));

  if ( (gpu_matrix_slice.size1() > 0) && (gpu_matrix_slice.size1() > 0) )
  {
    vcl_size_t num_entries = gpu_matrix_slice.size2() * gpu_matrix_slice.stride2(); //no. of entries per stride

    std::vector<NumericT> entries(num_entries);

    //copy each stride separately:
    for (vcl_size_t i=0; i < gpu_matrix_slice.size1(); ++i)
    {
      vcl_size_t start_offset = (gpu_matrix_slice.start1() + i * gpu_matrix_slice.stride1()) * gpu_matrix_slice.internal_size2() + gpu_matrix_slice.start2();
      viennacl::backend::memory_read(gpu_matrix_slice.handle(), sizeof(NumericT)*start_offset, sizeof(NumericT)*num_entries, &(entries[0]));

      for (vcl_size_t j=0; j < gpu_matrix_slice.size2(); ++j)
        entries[j * gpu_matrix_slice.stride2()] = detail::matrix_access<NumericT>(cpu_matrix, i, j);

      viennacl::backend::memory_write(gpu_matrix_slice.handle(), sizeof(NumericT)*start_offset, sizeof(NumericT)*num_entries, &(entries[0]));
    }
  }
}

//column_major:
template<typename CPUMatrixT, typename NumericT>
void copy(const CPUMatrixT & cpu_matrix,
          matrix_slice<matrix<NumericT, column_major, 1> > & gpu_matrix_slice )
{
  assert(    (viennacl::traits::size1(cpu_matrix) == gpu_matrix_slice.size1())
          && (viennacl::traits::size2(cpu_matrix) == gpu_matrix_slice.size2())
          && bool("Matrix size mismatch!"));


  if ( (gpu_matrix_slice.size1() > 0) && (gpu_matrix_slice.size1() > 0) )
  {
    vcl_size_t num_entries = gpu_matrix_slice.size1() * gpu_matrix_slice.stride1(); //no. of entries per stride

    std::vector<NumericT> entries(num_entries);

    //copy each column stride separately:
    for (vcl_size_t j=0; j < gpu_matrix_slice.size2(); ++j)
    {
      vcl_size_t start_offset = gpu_matrix_slice.start1() + (gpu_matrix_slice.start2() + j * gpu_matrix_slice.stride2()) * gpu_matrix_slice.internal_size1();

      viennacl::backend::memory_read(gpu_matrix_slice.handle(), sizeof(NumericT)*start_offset, sizeof(NumericT)*num_entries, &(entries[0]));

      for (vcl_size_t i=0; i < gpu_matrix_slice.size1(); ++i)
        entries[i * gpu_matrix_slice.stride1()] = detail::matrix_access<NumericT>(cpu_matrix, i, j);

      viennacl::backend::memory_write(gpu_matrix_slice.handle(), sizeof(NumericT)*start_offset, sizeof(NumericT)*num_entries, &(entries[0]));
    }
  }

}


/////////////////////////////////////////////////////////////
///////////////////////// GPU to CPU ////////////////////////
/////////////////////////////////////////////////////////////


//row_major:
template<typename CPUMatrixT, typename NumericT>
void copy(matrix_slice<matrix<NumericT, row_major, 1> > const & gpu_matrix_slice,
          CPUMatrixT & cpu_matrix)
{
  assert(    (viennacl::traits::size1(cpu_matrix) == gpu_matrix_slice.size1())
          && (viennacl::traits::size2(cpu_matrix) == gpu_matrix_slice.size2())
          && bool("Matrix size mismatch!"));

  if ( (gpu_matrix_slice.size1() > 0) && (gpu_matrix_slice.size1() > 0) )
  {
    vcl_size_t num_entries = gpu_matrix_slice.size2() * gpu_matrix_slice.stride2(); //no. of entries per stride

    std::vector<NumericT> entries(num_entries);

    //copy each stride separately:
    for (vcl_size_t i=0; i < gpu_matrix_slice.size1(); ++i)
    {
      vcl_size_t start_offset = (gpu_matrix_slice.start1() + i * gpu_matrix_slice.stride1()) * gpu_matrix_slice.internal_size2() + gpu_matrix_slice.start2();

      viennacl::backend::memory_read(gpu_matrix_slice.handle(), sizeof(NumericT)*start_offset, sizeof(NumericT)*num_entries, &(entries[0]));

      for (vcl_size_t j=0; j < gpu_matrix_slice.size2(); ++j)
        detail::matrix_access<NumericT>(cpu_matrix, i, j) = entries[j * gpu_matrix_slice.stride2()];
    }
  }

}


//column_major:
template<typename CPUMatrixT, typename NumericT>
void copy(matrix_slice<matrix<NumericT, column_major, 1> > const & gpu_matrix_slice,
          CPUMatrixT & cpu_matrix)
{
  assert(    (viennacl::traits::size1(cpu_matrix) == gpu_matrix_slice.size1())
          && (viennacl::traits::size2(cpu_matrix) == gpu_matrix_slice.size2())
          && bool("Matrix size mismatch!"));

  if ( (gpu_matrix_slice.size1() > 0) && (gpu_matrix_slice.size1() > 0) )
  {
    vcl_size_t num_entries = gpu_matrix_slice.size1() * gpu_matrix_slice.stride1(); //no. of entries per stride

    std::vector<NumericT> entries(num_entries);

    //copy each column stride separately:
    for (vcl_size_t j=0; j < gpu_matrix_slice.size2(); ++j)
    {
      vcl_size_t start_offset = gpu_matrix_slice.start1() + (gpu_matrix_slice.start2() + j * gpu_matrix_slice.stride2()) * gpu_matrix_slice.internal_size1();

      viennacl::backend::memory_read(gpu_matrix_slice.handle(), sizeof(NumericT)*start_offset, sizeof(NumericT)*num_entries, &(entries[0]));

      for (vcl_size_t i=0; i < gpu_matrix_slice.size1(); ++i)
        detail::matrix_access<NumericT>(cpu_matrix, i, j) = entries[i * gpu_matrix_slice.stride1()];
    }
  }

}


//
// Convenience function
//
template<typename MatrixType>
matrix_slice<MatrixType> project(MatrixType const & A, viennacl::slice const & r1, viennacl::slice const & r2)
{
  assert(r1.size() <= A.size1() && r2.size() <= A.size2() && bool("Size of slice invalid!"));

  return matrix_slice<MatrixType>(A, r1, r2);
}

template<typename MatrixType>
matrix_slice<MatrixType> project(matrix_range<MatrixType> const & A, viennacl::slice const & r1, viennacl::slice const & r2)
{
  assert(r1.size() <= A.size1() && r2.size() <= A.size2() && bool("Size of slice invalid!"));

  return matrix_slice<MatrixType>(A, r1, r2);
}

template<typename MatrixType>
matrix_slice<MatrixType> project(matrix_slice<MatrixType> const & A, viennacl::slice const & r1, viennacl::slice const & r2)
{
  assert(r1.size() <= A.size1() && r2.size() <= A.size2() && bool("Size of slice invalid!"));

  return matrix_slice<MatrixType>(A, r1, r2);
}

// TODO: Allow mix of range/slice

}

#endif