/usr/include/viennacl/scalar.hpp is in libviennacl-dev 1.7.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 | #ifndef VIENNACL_SCALAR_HPP_
#define VIENNACL_SCALAR_HPP_
/* =========================================================================
Copyright (c) 2010-2016, Institute for Microelectronics,
Institute for Analysis and Scientific Computing,
TU Wien.
Portions of this software are copyright by UChicago Argonne, LLC.
-----------------
ViennaCL - The Vienna Computing Library
-----------------
Project Head: Karl Rupp rupp@iue.tuwien.ac.at
(A list of authors and contributors can be found in the manual)
License: MIT (X11), see file LICENSE in the base directory
============================================================================= */
/** @file viennacl/scalar.hpp
@brief Implementation of the ViennaCL scalar class
*/
#include <iostream>
#include "viennacl/forwards.h"
#include "viennacl/backend/memory.hpp"
#include "viennacl/meta/result_of.hpp"
#include "viennacl/linalg/scalar_operations.hpp"
#include "viennacl/traits/handle.hpp"
#ifdef VIENNACL_WITH_OPENCL
#include "viennacl/ocl/backend.hpp"
#endif
namespace viennacl
{
/** @brief A proxy for scalar expressions (e.g. from inner vector products)
*
* assumption: dim(LHS) >= dim(RHS), where dim(scalar) = 0, dim(vector) = 1 and dim(matrix = 2)
* @tparam LHS The left hand side operand
* @tparam RHS The right hand side operand
* @tparam OP The operation tag
*/
template<typename LHS, typename RHS, typename OP>
class scalar_expression
{
typedef typename LHS::value_type DummyType; //Visual C++ 2005 does not allow to write LHS::value_type::value_type
public:
typedef typename viennacl::result_of::cpu_value_type<DummyType>::type ScalarType;
scalar_expression(LHS & lhs, RHS & rhs) : lhs_(lhs), rhs_(rhs) {}
/** @brief Returns the left hand side operand */
LHS & lhs() const { return lhs_; }
/** @brief Returns the left hand side operand */
RHS & rhs() const { return rhs_; }
/** @brief Conversion operator to a ViennaCL scalar */
operator ScalarType () const
{
viennacl::scalar<ScalarType> temp;
temp = *this;
return temp;
}
private:
LHS & lhs_;
RHS & rhs_;
};
/** @brief Specialization of a scalar expression for inner products. Allows for a final reduction on the CPU
*
* assumption: dim(LHS) >= dim(RHS), where dim(scalar) = 0, dim(vector) = 1 and dim(matrix = 2)
* @tparam LHS The left hand side operand
* @tparam RHS The right hand side operand
* @tparam OP The operation tag
*/
template<typename LHS, typename RHS>
class scalar_expression<LHS, RHS, op_inner_prod>
{
//typedef typename LHS::value_type DummyType; //Visual C++ 2005 does not allow to write LHS::value_type::value_type
public:
typedef typename viennacl::result_of::cpu_value_type<LHS>::type ScalarType;
scalar_expression(LHS & lhs, RHS & rhs) : lhs_(lhs), rhs_(rhs) {}
/** @brief Returns the left hand side operand */
LHS & lhs() const { return lhs_; }
/** @brief Returns the left hand side operand */
RHS & rhs() const { return rhs_; }
/** @brief Conversion operator to a ViennaCL scalar */
operator ScalarType () const
{
ScalarType result;
viennacl::linalg::inner_prod_cpu(lhs_, rhs_, result);
return result;
}
private:
LHS & lhs_;
RHS & rhs_;
};
/** @brief Specialization of a scalar expression for norm_1. Allows for a final reduction on the CPU
*
* @tparam LHS The left hand side operand
* @tparam RHS The right hand side operand
*/
template<typename LHS, typename RHS>
class scalar_expression<LHS, RHS, op_norm_1>
{
//typedef typename LHS::value_type DummyType; //Visual C++ 2005 does not allow to write LHS::value_type::value_type
public:
typedef typename viennacl::result_of::cpu_value_type<LHS>::type ScalarType;
scalar_expression(LHS & lhs, RHS & rhs) : lhs_(lhs), rhs_(rhs) {}
/** @brief Returns the left hand side operand */
LHS & lhs() const { return lhs_; }
/** @brief Returns the left hand side operand */
RHS & rhs() const { return rhs_; }
/** @brief Conversion operator to a ViennaCL scalar */
operator ScalarType () const
{
ScalarType result;
viennacl::linalg::norm_1_cpu(lhs_, result);
return result;
}
private:
LHS & lhs_;
RHS & rhs_;
};
/** @brief Specialization of a scalar expression for norm_2. Allows for a final reduction on the CPU
*
* @tparam LHS The left hand side operand
* @tparam RHS The right hand side operand
*/
template<typename LHS, typename RHS>
class scalar_expression<LHS, RHS, op_norm_2>
{
//typedef typename LHS::value_type DummyType; //Visual C++ 2005 does not allow to write LHS::value_type::value_type
public:
typedef typename viennacl::result_of::cpu_value_type<LHS>::type ScalarType;
scalar_expression(LHS & lhs, RHS & rhs) : lhs_(lhs), rhs_(rhs) {}
/** @brief Returns the left hand side operand */
LHS & lhs() const { return lhs_; }
/** @brief Returns the left hand side operand */
RHS & rhs() const { return rhs_; }
/** @brief Conversion operator to a ViennaCL scalar */
operator ScalarType () const
{
ScalarType result;
viennacl::linalg::norm_2_cpu(lhs_, result);
return result;
}
private:
LHS & lhs_;
RHS & rhs_;
};
/** @brief Specialization of a scalar expression for norm_inf. Allows for a final reduction on the CPU
*
* @tparam LHS The left hand side operand
* @tparam RHS The right hand side operand
*/
template<typename LHS, typename RHS>
class scalar_expression<LHS, RHS, op_norm_inf>
{
//typedef typename LHS::value_type DummyType; //Visual C++ 2005 does not allow to write LHS::value_type::value_type
public:
typedef typename viennacl::result_of::cpu_value_type<LHS>::type ScalarType;
scalar_expression(LHS & lhs, RHS & rhs) : lhs_(lhs), rhs_(rhs) {}
/** @brief Returns the left hand side operand */
LHS & lhs() const { return lhs_; }
/** @brief Returns the left hand side operand */
RHS & rhs() const { return rhs_; }
/** @brief Conversion operator to a ViennaCL scalar */
operator ScalarType () const
{
ScalarType result;
viennacl::linalg::norm_inf_cpu(lhs_, result);
return result;
}
private:
LHS & lhs_;
RHS & rhs_;
};
/** @brief Specialization of a scalar expression for max(). Allows for a final reduction on the CPU
*
* @tparam LHS The left hand side operand
* @tparam RHS The right hand side operand
*/
template<typename LHS, typename RHS>
class scalar_expression<LHS, RHS, op_max>
{
//typedef typename LHS::value_type DummyType; //Visual C++ 2005 does not allow to write LHS::value_type::value_type
public:
typedef typename viennacl::result_of::cpu_value_type<LHS>::type ScalarType;
scalar_expression(LHS & lhs, RHS & rhs) : lhs_(lhs), rhs_(rhs) {}
/** @brief Returns the left hand side operand */
LHS & lhs() const { return lhs_; }
/** @brief Returns the left hand side operand */
RHS & rhs() const { return rhs_; }
/** @brief Conversion operator to a ViennaCL scalar */
operator ScalarType () const
{
ScalarType result;
viennacl::linalg::max_cpu(lhs_, result);
return result;
}
private:
LHS & lhs_;
RHS & rhs_;
};
/** @brief Specialization of a scalar expression for norm_inf. Allows for a final reduction on the CPU
*
* @tparam LHS The left hand side operand
* @tparam RHS The right hand side operand
*/
template<typename LHS, typename RHS>
class scalar_expression<LHS, RHS, op_min>
{
//typedef typename LHS::value_type DummyType; //Visual C++ 2005 does not allow to write LHS::value_type::value_type
public:
typedef typename viennacl::result_of::cpu_value_type<LHS>::type ScalarType;
scalar_expression(LHS & lhs, RHS & rhs) : lhs_(lhs), rhs_(rhs) {}
/** @brief Returns the left hand side operand */
LHS & lhs() const { return lhs_; }
/** @brief Returns the left hand side operand */
RHS & rhs() const { return rhs_; }
/** @brief Conversion operator to a ViennaCL scalar */
operator ScalarType () const
{
ScalarType result;
viennacl::linalg::min_cpu(lhs_, result);
return result;
}
private:
LHS & lhs_;
RHS & rhs_;
};
/** @brief Specialization of a scalar expression for norm_inf. Allows for a final reduction on the CPU
*
* @tparam LHS The left hand side operand
* @tparam RHS The right hand side operand
*/
template<typename LHS, typename RHS>
class scalar_expression<LHS, RHS, op_sum>
{
//typedef typename LHS::value_type DummyType; //Visual C++ 2005 does not allow to write LHS::value_type::value_type
public:
typedef typename viennacl::result_of::cpu_value_type<LHS>::type ScalarType;
scalar_expression(LHS & lhs, RHS & rhs) : lhs_(lhs), rhs_(rhs) {}
/** @brief Returns the left hand side operand */
LHS & lhs() const { return lhs_; }
/** @brief Returns the left hand side operand */
RHS & rhs() const { return rhs_; }
/** @brief Conversion operator to a ViennaCL scalar */
operator ScalarType () const
{
ScalarType result;
viennacl::linalg::sum_cpu(lhs_, result);
return result;
}
private:
LHS & lhs_;
RHS & rhs_;
};
/** @brief Specialization of a scalar expression for norm_frobenius. Allows for a final reduction on the CPU
*
* @tparam LHS The left hand side operand
* @tparam RHS The right hand side operand
*/
template<typename LHS, typename RHS>
class scalar_expression<LHS, RHS, op_norm_frobenius>
{
//typedef typename LHS::value_type DummyType; //Visual C++ 2005 does not allow to write LHS::value_type::value_type
public:
typedef typename viennacl::result_of::cpu_value_type<LHS>::type ScalarType;
scalar_expression(LHS & lhs, RHS & rhs) : lhs_(lhs), rhs_(rhs) {}
/** @brief Returns the left hand side operand */
LHS & lhs() const { return lhs_; }
/** @brief Returns the left hand side operand */
RHS & rhs() const { return rhs_; }
/** @brief Conversion operator to a ViennaCL scalar */
operator ScalarType () const
{
ScalarType result;
viennacl::linalg::norm_frobenius_cpu(lhs_, result);
return result;
}
private:
LHS & lhs_;
RHS & rhs_;
};
/** @brief This class represents a single scalar value on the GPU and behaves mostly like a built-in scalar type like float or double.
*
* Since every read and write operation requires a CPU->GPU or GPU->CPU transfer, this type should be used with care.
* The advantage of this type is that the GPU command queue can be filled without blocking read operations.
*
* @tparam NumericT Either float or double. Checked at compile time.
*/
template<class NumericT>
class scalar
{
typedef scalar<NumericT> self_type;
public:
typedef viennacl::backend::mem_handle handle_type;
typedef vcl_size_t size_type;
/** @brief Returns the underlying host scalar type. */
typedef NumericT value_type;
/** @brief Creates the scalar object, but does not yet allocate memory. Thus, scalar<> can also be a global variable (if really necessary). */
scalar() {}
/** @brief Allocates the memory for the scalar and sets it to the supplied value. */
scalar(NumericT val, viennacl::context ctx = viennacl::context())
{
viennacl::backend::memory_create(val_, sizeof(NumericT), ctx, &val);
}
#ifdef VIENNACL_WITH_OPENCL
/** @brief Wraps an existing memory entry into a scalar
*
* @param mem The OpenCL memory handle
* @param size Ignored - Only necessary to avoid ambiguities. Users are advised to set this parameter to '1'.
*/
explicit scalar(cl_mem mem, size_type /*size*/)
{
val_.switch_active_handle_id(viennacl::OPENCL_MEMORY);
val_.opencl_handle() = mem;
val_.opencl_handle().inc(); //prevents that the user-provided memory is deleted once the vector object is destroyed.
}
#endif
/** @brief Allocates memory for the scalar and sets it to the result of supplied expression. */
template<typename T1, typename T2, typename OP>
scalar(scalar_expression<T1, T2, OP> const & proxy)
{
val_.switch_active_handle_id(viennacl::traits::handle(proxy.lhs()).get_active_handle_id());
viennacl::backend::memory_create(val_, sizeof(NumericT), viennacl::traits::context(proxy));
*this = proxy;
}
//copy constructor
/** @brief Copy constructor. Allocates new memory for the scalar and copies the value of the supplied scalar */
scalar(const scalar & other)
{
if (other.handle().get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED)
{
//copy value:
val_.switch_active_handle_id(other.handle().get_active_handle_id());
viennacl::backend::memory_create(val_, sizeof(NumericT), viennacl::traits::context(other));
viennacl::backend::memory_copy(other.handle(), val_, 0, 0, sizeof(NumericT));
}
}
/** @brief Reads the value of the scalar from the GPU and returns the float or double value. */
operator NumericT() const
{
// make sure the scalar contains reasonable data:
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized, cannot read!"));
NumericT tmp;
viennacl::backend::memory_read(val_, 0, sizeof(NumericT), &tmp);
return tmp;
}
/** @brief Assigns a vector entry. */
self_type & operator= (entry_proxy<NumericT> const & other)
{
init_if_necessary(viennacl::traits::context(other));
viennacl::backend::memory_copy(other.handle(), val_, other.index() * sizeof(NumericT), 0, sizeof(NumericT));
return *this;
}
/** @brief Assigns the value from another scalar. */
self_type & operator= (scalar<NumericT> const & other)
{
init_if_necessary(viennacl::traits::context(other));
viennacl::backend::memory_copy(other.handle(), val_, 0, 0, sizeof(NumericT));
return *this;
}
self_type & operator= (float cpu_other)
{
init_if_necessary(viennacl::context());
//copy value:
NumericT value = static_cast<NumericT>(cpu_other);
viennacl::backend::memory_write(val_, 0, sizeof(NumericT), &value);
return *this;
}
self_type & operator= (double cpu_other)
{
init_if_necessary(viennacl::context());
NumericT value = static_cast<NumericT>(cpu_other);
viennacl::backend::memory_write(val_, 0, sizeof(NumericT), &value);
return *this;
}
self_type & operator= (long cpu_other)
{
init_if_necessary(viennacl::context());
NumericT value = static_cast<NumericT>(cpu_other);
viennacl::backend::memory_write(val_, 0, sizeof(NumericT), &value);
return *this;
}
self_type & operator= (unsigned long cpu_other)
{
init_if_necessary(viennacl::context());
NumericT value = static_cast<NumericT>(cpu_other);
viennacl::backend::memory_write(val_, 0, sizeof(NumericT), &value);
return *this;
}
self_type & operator= (int cpu_other)
{
init_if_necessary(viennacl::context());
NumericT value = static_cast<NumericT>(cpu_other);
viennacl::backend::memory_write(val_, 0, sizeof(NumericT), &value);
return *this;
}
self_type & operator= (unsigned int cpu_other)
{
init_if_necessary(viennacl::context());
NumericT value = static_cast<NumericT>(cpu_other);
viennacl::backend::memory_write(val_, 0, sizeof(NumericT), &value);
return *this;
}
/** @brief Sets the scalar to the result of supplied inner product expression. */
template<typename T1, typename T2>
self_type & operator= (scalar_expression<T1, T2, op_inner_prod> const & proxy)
{
init_if_necessary(viennacl::traits::context(proxy));
viennacl::linalg::inner_prod_impl(proxy.lhs(), proxy.rhs(), *this);
return *this;
}
/** @brief Sets the scalar to the result of supplied norm_1 expression. */
template<typename T1, typename T2>
self_type & operator= (scalar_expression<T1, T2, op_norm_1> const & proxy)
{
init_if_necessary(viennacl::traits::context(proxy));
viennacl::linalg::norm_1_impl(proxy.lhs(), *this);
return *this;
}
/** @brief Sets the scalar to the result of supplied norm_2 expression. */
template<typename T1, typename T2>
self_type & operator= (scalar_expression<T1, T2, op_norm_2> const & proxy)
{
init_if_necessary(viennacl::traits::context(proxy));
viennacl::linalg::norm_2_impl(proxy.lhs(), *this);
return *this;
}
/** @brief Sets the scalar to the result of supplied norm_inf expression. */
template<typename T1, typename T2>
self_type & operator= (scalar_expression<T1, T2, op_norm_inf> const & proxy)
{
init_if_necessary(viennacl::traits::context(proxy));
viennacl::linalg::norm_inf_impl(proxy.lhs(), *this);
return *this;
}
/** @brief Sets the scalar to the result of supplied max expression. */
template<typename T1, typename T2>
self_type & operator= (scalar_expression<T1, T2, op_max> const & proxy)
{
init_if_necessary(viennacl::traits::context(proxy));
viennacl::linalg::max_impl(proxy.lhs(), *this);
return *this;
}
/** @brief Sets the scalar to the result of supplied min expression. */
template<typename T1, typename T2>
self_type & operator= (scalar_expression<T1, T2, op_min> const & proxy)
{
init_if_necessary(viennacl::traits::context(proxy));
viennacl::linalg::min_impl(proxy.lhs(), *this);
return *this;
}
/** @brief Sets the scalar to the result of supplied sum expression. */
template<typename T1, typename T2>
self_type & operator= (scalar_expression<T1, T2, op_sum> const & proxy)
{
init_if_necessary(viennacl::traits::context(proxy));
viennacl::linalg::sum_impl(proxy.lhs(), *this);
return *this;
}
/** @brief Sets the scalar to the result of supplied norm_frobenius expression. */
template<typename T1, typename T2>
self_type & operator= (scalar_expression<T1, T2, op_norm_frobenius> const & proxy)
{
init_if_necessary(viennacl::traits::context(proxy));
viennacl::linalg::norm_frobenius_impl(proxy.lhs(), *this);
return *this;
}
/** @brief Sets the scalar to the inverse with respect to addition of the supplied sub-expression */
template<typename T1, typename T2>
self_type & operator= (scalar_expression<T1, T2, op_flip_sign> const & proxy)
{
init_if_necessary(viennacl::traits::context(proxy));
viennacl::linalg::as(*this, proxy.lhs(), NumericT(-1.0), 1, false, true);
return *this;
}
/** @brief Inplace addition of a ViennaCL scalar */
self_type & operator += (scalar<NumericT> const & other)
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
viennacl::linalg::asbs(*this, // s1 =
*this, NumericT(1.0), 1, false, false, // s1 * 1.0
other, NumericT(1.0), 1, false, false); // + s2 * 1.0
return *this;
}
/** @brief Inplace addition of a host scalar (float or double) */
self_type & operator += (NumericT other)
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
viennacl::linalg::asbs(*this, // s1 =
*this, NumericT(1.0), 1, false, false, // s1 * 1.0
other, NumericT(1.0), 1, false, false); // + s2 * 1.0
return *this;
}
/** @brief Inplace subtraction of a ViennaCL scalar */
self_type & operator -= (scalar<NumericT> const & other)
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
viennacl::linalg::asbs(*this, // s1 =
*this, NumericT(1.0), 1, false, false, // s1 * 1.0
other, NumericT(-1.0), 1, false, false); // + s2 * (-1.0)
return *this;
}
/** @brief Inplace subtraction of a host scalar (float or double) */
self_type & operator -= (NumericT other)
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
viennacl::linalg::asbs(*this, // s1 =
*this, NumericT(1.0), 1, false, false, // s1 * 1.0
other, NumericT(-1.0), 1, false, false); // + s2 * (-1.0)
return *this;
}
/** @brief Inplace multiplication with a ViennaCL scalar */
self_type & operator *= (scalar<NumericT> const & other)
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
viennacl::linalg::as(*this, // s1 =
*this, other, 1, false, false); // s1 * s2
return *this;
}
/** @brief Inplace multiplication with a host scalar (float or double) */
self_type & operator *= (NumericT other)
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
viennacl::linalg::as(*this, // s1 =
*this, other, 1, false, false); // s1 * s2
return *this;
}
//////////////// operator /= ////////////////////////////
/** @brief Inplace division with a ViennaCL scalar */
self_type & operator /= (scalar<NumericT> const & other)
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
viennacl::linalg::as(*this, // s1 =
*this, other, 1, true, false); // s1 / s2
return *this;
}
/** @brief Inplace division with a host scalar (float or double) */
self_type & operator /= (NumericT other)
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
viennacl::linalg::as(*this, // s1 =
*this, other, 1, true, false); // s1 / s2
return *this;
}
//////////////// operator + ////////////////////////////
/** @brief Addition of two ViennaCL scalars */
self_type operator + (scalar<NumericT> const & other)
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
self_type result = 0;
viennacl::linalg::asbs(result, // result =
*this, NumericT(1.0), 1, false, false, // *this * 1.0
other, NumericT(1.0), 1, false, false); // + other * 1.0
return result;
}
/** @brief Addition of a ViennaCL scalar with a scalar expression */
template<typename T1, typename T2, typename OP>
self_type operator + (scalar_expression<T1, T2, OP> const & proxy) const
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
self_type result = proxy;
viennacl::linalg::asbs(result, // result =
*this, NumericT(1.0), 1, false, false, // *this * 1.0
result, NumericT(1.0), 1, false, false); // + result * 1.0
return result;
}
/** @brief Addition of a ViennaCL scalar with a host scalar (float, double) */
self_type operator + (NumericT other)
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
self_type result = 0;
viennacl::linalg::asbs(result, // result =
*this, NumericT(1.0), 1, false, false, // *this * 1.0
other, NumericT(1.0), 1, false, false); // + other * 1.0
return result;
}
//////////////// operator - ////////////////////////////
/** @brief Sign flip of the scalar. Does not evaluate immediately, but instead returns an expression template object */
scalar_expression<const self_type, const self_type, op_flip_sign> operator-() const
{
return scalar_expression<const self_type, const self_type, op_flip_sign>(*this, *this);
}
/** @brief Subtraction of two ViennaCL scalars */
self_type operator - (scalar<NumericT> const & other) const
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
self_type result = 0;
viennacl::linalg::asbs(result, // result =
*this, NumericT(1.0), 1, false, false, // *this * 1.0
other, NumericT(-1.0), 1, false, false); // + other * (-1.0)
return result;
}
/** @brief Subtraction of a ViennaCL scalar from a scalar expression */
template<typename T1, typename T2, typename OP>
self_type operator - (scalar_expression<T1, T2, OP> const & proxy) const
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
self_type result = proxy;
viennacl::linalg::asbs(result, // result =
*this, NumericT(1.0), 1 , false, false, // *this * 1.0
result, NumericT(-1.0), 1, false, false); // + result * (-1.0)
return result;
}
/** @brief Subtraction of a host scalar (float, double) from a ViennaCL scalar */
scalar<NumericT> operator - (NumericT other) const
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
self_type result = 0;
viennacl::linalg::asbs(result, // result =
*this, NumericT(1.0), 1, false, false, // *this * 1.0
other, NumericT(-1.0), 1, false, false); // + other * (-1.0)
return result;
}
//////////////// operator * ////////////////////////////
/** @brief Multiplication of two ViennaCL scalars */
self_type operator * (scalar<NumericT> const & other) const
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
scalar<NumericT> result = 0;
viennacl::linalg::as(result, // result =
*this, other, 1, false, false); // *this * other
return result;
}
/** @brief Multiplication of a ViennaCL scalar with a scalar expression */
template<typename T1, typename T2, typename OP>
self_type operator * (scalar_expression<T1, T2, OP> const & proxy) const
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
self_type result = proxy;
viennacl::linalg::as(result, // result =
*this, result, 1, false, false); // *this * proxy
return result;
}
/** @brief Multiplication of a host scalar (float, double) with a ViennaCL scalar */
self_type operator * (NumericT other) const
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
scalar<NumericT> result = 0;
viennacl::linalg::as(result, // result =
*this, other, 1, false, false); // *this * other
return result;
}
//////////////// operator / ////////////////////////////
/** @brief Division of two ViennaCL scalars */
self_type operator / (scalar<NumericT> const & other) const
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
self_type result = 0;
viennacl::linalg::as(result, // result =
*this, other, 1, true, false); // *this / other
return result;
}
/** @brief Division of a ViennaCL scalar by a scalar expression */
template<typename T1, typename T2, typename OP>
self_type operator / (scalar_expression<T1, T2, OP> const & proxy) const
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
self_type result = proxy;
viennacl::linalg::as(result, // result =
*this, result, 1, true, false); // *this / proxy
return result;
}
/** @brief Division of a ViennaCL scalar by a host scalar (float, double)*/
self_type operator / (NumericT other) const
{
assert( val_.get_active_handle_id() != viennacl::MEMORY_NOT_INITIALIZED && bool("Scalar not initialized!"));
self_type result = 0;
viennacl::linalg::as(result, // result =
*this, other, 1, true, false); // *this / other
return result;
}
/** @brief Returns the memory handle, non-const version */
handle_type & handle() { return val_; }
/** @brief Returns the memory handle, const version */
const handle_type & handle() const { return val_; }
private:
void init_if_necessary(viennacl::context ctx)
{
if (val_.get_active_handle_id() == viennacl::MEMORY_NOT_INITIALIZED)
{
viennacl::backend::memory_create(val_, sizeof(NumericT), ctx);
}
}
handle_type val_;
};
//stream operators:
/** @brief Allows to directly print the value of a scalar to an output stream */
template<class NumericT>
std::ostream & operator<<(std::ostream & s, const scalar<NumericT> & val)
{
NumericT temp = val;
s << temp;
return s;
}
/** @brief Allows to directly read a value of a scalar from an input stream */
template<class NumericT>
std::istream & operator>>(std::istream & s, const scalar<NumericT> & val)
{
NumericT temp;
s >> temp;
val = temp;
return s;
}
} //namespace viennacl
#endif
|