/usr/include/viennacl/scheduler/execute.hpp is in libviennacl-dev 1.7.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 | #ifndef VIENNACL_SCHEDULER_EXECUTE_HPP
#define VIENNACL_SCHEDULER_EXECUTE_HPP
/* =========================================================================
Copyright (c) 2010-2016, Institute for Microelectronics,
Institute for Analysis and Scientific Computing,
TU Wien.
Portions of this software are copyright by UChicago Argonne, LLC.
-----------------
ViennaCL - The Vienna Computing Library
-----------------
Project Head: Karl Rupp rupp@iue.tuwien.ac.at
(A list of authors and contributors can be found in the manual)
License: MIT (X11), see file LICENSE in the base directory
============================================================================= */
/** @file viennacl/scheduler/execute.hpp
@brief Provides the datastructures for dealing with a single statement such as 'x = y + z;'
*/
#include "viennacl/forwards.h"
#include "viennacl/scheduler/forwards.h"
#include "viennacl/scheduler/execute_scalar_assign.hpp"
#include "viennacl/scheduler/execute_axbx.hpp"
#include "viennacl/scheduler/execute_elementwise.hpp"
#include "viennacl/scheduler/execute_matrix_prod.hpp"
#include "viennacl/scheduler/execute_util.hpp"
namespace viennacl
{
namespace scheduler
{
namespace detail
{
/** @brief Deals with x = RHS where RHS is an expression and x is either a scalar, a vector, or a matrix */
void execute_composite(statement const & s, statement_node const & root_node)
{
statement::container_type const & expr = s.array();
viennacl::context ctx = extract_context(root_node);
statement_node const & leaf = expr[root_node.rhs.node_index];
if (leaf.op.type == OPERATION_BINARY_ADD_TYPE || leaf.op.type == OPERATION_BINARY_SUB_TYPE) // x = (y) +- (z) where y and z are either data objects or expressions
execute_axbx(s, root_node);
else if (leaf.op.type == OPERATION_BINARY_MULT_TYPE || leaf.op.type == OPERATION_BINARY_DIV_TYPE) // x = (y) * / alpha;
{
bool scalar_is_temporary = (leaf.rhs.type_family != SCALAR_TYPE_FAMILY);
statement_node scalar_temp_node;
if (scalar_is_temporary)
{
lhs_rhs_element temp;
temp.type_family = SCALAR_TYPE_FAMILY;
temp.subtype = DEVICE_SCALAR_TYPE;
temp.numeric_type = root_node.lhs.numeric_type;
detail::new_element(scalar_temp_node.lhs, temp, ctx);
scalar_temp_node.op.type_family = OPERATION_BINARY_TYPE_FAMILY;
scalar_temp_node.op.type = OPERATION_BINARY_ASSIGN_TYPE;
scalar_temp_node.rhs.type_family = COMPOSITE_OPERATION_FAMILY;
scalar_temp_node.rhs.subtype = INVALID_SUBTYPE;
scalar_temp_node.rhs.numeric_type = INVALID_NUMERIC_TYPE;
scalar_temp_node.rhs.node_index = leaf.rhs.node_index;
// work on subexpression:
// TODO: Catch exception, free temporary, then rethrow
execute_composite(s, scalar_temp_node);
}
if (leaf.lhs.type_family == COMPOSITE_OPERATION_FAMILY) //(y) is an expression, so introduce a temporary z = (y):
{
statement_node new_root_y;
new_root_y.lhs.type_family = root_node.lhs.type_family;
new_root_y.lhs.subtype = root_node.lhs.subtype;
new_root_y.lhs.numeric_type = root_node.lhs.numeric_type;
detail::new_element(new_root_y.lhs, root_node.lhs, ctx);
new_root_y.op.type_family = OPERATION_BINARY_TYPE_FAMILY;
new_root_y.op.type = OPERATION_BINARY_ASSIGN_TYPE;
new_root_y.rhs.type_family = COMPOSITE_OPERATION_FAMILY;
new_root_y.rhs.subtype = INVALID_SUBTYPE;
new_root_y.rhs.numeric_type = INVALID_NUMERIC_TYPE;
new_root_y.rhs.node_index = leaf.lhs.node_index;
// work on subexpression:
// TODO: Catch exception, free temporary, then rethrow
execute_composite(s, new_root_y);
// now compute x = z * / alpha:
lhs_rhs_element u = root_node.lhs;
lhs_rhs_element v = new_root_y.lhs;
lhs_rhs_element alpha = scalar_is_temporary ? scalar_temp_node.lhs : leaf.rhs;
bool is_division = (leaf.op.type == OPERATION_BINARY_DIV_TYPE);
switch (root_node.op.type)
{
case OPERATION_BINARY_ASSIGN_TYPE:
detail::ax(u,
v, alpha, 1, is_division, false);
break;
case OPERATION_BINARY_INPLACE_ADD_TYPE:
detail::axbx(u,
u, 1.0, 1, false, false,
v, alpha, 1, is_division, false);
break;
case OPERATION_BINARY_INPLACE_SUB_TYPE:
detail::axbx(u,
u, 1.0, 1, false, false,
v, alpha, 1, is_division, true);
break;
default:
throw statement_not_supported_exception("Unsupported binary operator for vector operation in root note (should be =, +=, or -=)");
}
detail::delete_element(new_root_y.lhs);
}
else if (leaf.lhs.type_family != COMPOSITE_OPERATION_FAMILY)
{
lhs_rhs_element u = root_node.lhs;
lhs_rhs_element v = leaf.lhs;
lhs_rhs_element alpha = scalar_is_temporary ? scalar_temp_node.lhs : leaf.rhs;
bool is_division = (leaf.op.type == OPERATION_BINARY_DIV_TYPE);
switch (root_node.op.type)
{
case OPERATION_BINARY_ASSIGN_TYPE:
detail::ax(u,
v, alpha, 1, is_division, false);
break;
case OPERATION_BINARY_INPLACE_ADD_TYPE:
detail::axbx(u,
u, 1.0, 1, false, false,
v, alpha, 1, is_division, false);
break;
case OPERATION_BINARY_INPLACE_SUB_TYPE:
detail::axbx(u,
u, 1.0, 1, false, false,
v, alpha, 1, is_division, true);
break;
default:
throw statement_not_supported_exception("Unsupported binary operator for vector operation in root note (should be =, +=, or -=)");
}
}
else
throw statement_not_supported_exception("Unsupported binary operator for OPERATION_BINARY_MULT_TYPE || OPERATION_BINARY_DIV_TYPE on leaf node.");
// clean up
if (scalar_is_temporary)
detail::delete_element(scalar_temp_node.lhs);
}
else if ( leaf.op.type == OPERATION_BINARY_INNER_PROD_TYPE
|| leaf.op.type == OPERATION_UNARY_NORM_1_TYPE
|| leaf.op.type == OPERATION_UNARY_NORM_2_TYPE
|| leaf.op.type == OPERATION_UNARY_NORM_INF_TYPE
|| leaf.op.type == OPERATION_UNARY_MAX_TYPE
|| leaf.op.type == OPERATION_UNARY_MIN_TYPE)
execute_scalar_assign_composite(s, root_node);
else if ( (leaf.op.type_family == OPERATION_UNARY_TYPE_FAMILY && leaf.op.type != OPERATION_UNARY_TRANS_TYPE)
|| leaf.op.type == OPERATION_BINARY_ELEMENT_PROD_TYPE
|| leaf.op.type == OPERATION_BINARY_ELEMENT_DIV_TYPE
|| leaf.op.type == OPERATION_BINARY_ELEMENT_POW_TYPE) // element-wise operations
execute_element_composite(s, root_node);
else if ( leaf.op.type == OPERATION_BINARY_MAT_VEC_PROD_TYPE
|| leaf.op.type == OPERATION_BINARY_MAT_MAT_PROD_TYPE)
execute_matrix_prod(s, root_node);
else if ( leaf.op.type == OPERATION_UNARY_TRANS_TYPE)
{
if (root_node.op.type == OPERATION_BINARY_ASSIGN_TYPE)
assign_trans(root_node.lhs, leaf.lhs);
else // use temporary object:
{
statement_node new_root_y;
new_root_y.lhs.type_family = root_node.lhs.type_family;
new_root_y.lhs.subtype = root_node.lhs.subtype;
new_root_y.lhs.numeric_type = root_node.lhs.numeric_type;
detail::new_element(new_root_y.lhs, root_node.lhs, ctx);
new_root_y.op.type_family = OPERATION_BINARY_TYPE_FAMILY;
new_root_y.op.type = OPERATION_BINARY_ASSIGN_TYPE;
new_root_y.rhs.type_family = COMPOSITE_OPERATION_FAMILY;
new_root_y.rhs.subtype = INVALID_SUBTYPE;
new_root_y.rhs.numeric_type = INVALID_NUMERIC_TYPE;
new_root_y.rhs.node_index = root_node.rhs.node_index;
// work on subexpression:
// TODO: Catch exception, free temporary, then rethrow
execute_composite(s, new_root_y);
// now compute x += temp or x -= temp:
lhs_rhs_element u = root_node.lhs;
lhs_rhs_element v = new_root_y.lhs;
if (root_node.op.type == OPERATION_BINARY_INPLACE_ADD_TYPE)
{
detail::axbx(u,
u, 1.0, 1, false, false,
v, 1.0, 1, false, false);
}
else if (root_node.op.type == OPERATION_BINARY_INPLACE_SUB_TYPE)
{
detail::axbx(u,
u, 1.0, 1, false, false,
v, 1.0, 1, false, true);
}
else
throw statement_not_supported_exception("Unsupported binary operator for operation in root node (should be =, +=, or -=)");
detail::delete_element(new_root_y.lhs);
}
}
else
throw statement_not_supported_exception("Unsupported binary operator");
}
/** @brief Deals with x = y for a scalar/vector/matrix x, y */
inline void execute_single(statement const &, statement_node const & root_node)
{
lhs_rhs_element u = root_node.lhs;
lhs_rhs_element v = root_node.rhs;
switch (root_node.op.type)
{
case OPERATION_BINARY_ASSIGN_TYPE:
detail::ax(u,
v, 1.0, 1, false, false);
break;
case OPERATION_BINARY_INPLACE_ADD_TYPE:
detail::axbx(u,
u, 1.0, 1, false, false,
v, 1.0, 1, false, false);
break;
case OPERATION_BINARY_INPLACE_SUB_TYPE:
detail::axbx(u,
u, 1.0, 1, false, false,
v, 1.0, 1, false, true);
break;
default:
throw statement_not_supported_exception("Unsupported binary operator for operation in root note (should be =, +=, or -=)");
}
}
inline void execute_impl(statement const & s, statement_node const & root_node)
{
if ( root_node.lhs.type_family != SCALAR_TYPE_FAMILY
&& root_node.lhs.type_family != VECTOR_TYPE_FAMILY
&& root_node.lhs.type_family != MATRIX_TYPE_FAMILY)
throw statement_not_supported_exception("Unsupported lvalue encountered in head node.");
switch (root_node.rhs.type_family)
{
case COMPOSITE_OPERATION_FAMILY:
execute_composite(s, root_node);
break;
case SCALAR_TYPE_FAMILY:
case VECTOR_TYPE_FAMILY:
case MATRIX_TYPE_FAMILY:
execute_single(s, root_node);
break;
default:
throw statement_not_supported_exception("Invalid rvalue encountered in vector assignment");
}
}
}
inline void execute(statement const & s)
{
// simply start execution from the root node:
detail::execute_impl(s, s.array()[s.root()]);
}
}
} //namespace viennacl
#endif
|