This file is indexed.

/usr/include/viennacl/tools/adapter.hpp is in libviennacl-dev 1.7.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#ifndef VIENNACL_TOOLS_ADAPTER_HPP_
#define VIENNACL_TOOLS_ADAPTER_HPP_

/* =========================================================================
   Copyright (c) 2010-2016, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */

/** @file viennacl/tools/adapter.hpp
    @brief Adapter classes for sparse matrices made of the STL type std::vector<std::map<SizeT, NumericT> >
*/

#include <string>
#include <fstream>
#include <sstream>
#include <assert.h>
#include "viennacl/forwards.h"

#include <vector>
#include <map>

namespace viennacl
{
namespace tools
{

/** @brief A const iterator for sparse matrices of type std::vector<std::map<SizeT, NumericT> >
*
*  The iterator behaves like ublas iterators. Attention: Iteration along first columns and then rows via .begin() is untested!
*
*  @tparam NumericT     either float or double
*  @tparam is_iterator1   if true, this iterator iterates along increasing row indices, otherwise along increasing column indices
*  @tparam increment      if +1, this is a forward iterator, if -1 we have a reverse iterator
*/
template<typename NumericT, typename SizeT, bool is_iterator1, bool is_forward>
class const_sparse_matrix_adapted_iterator
{
  typedef const_sparse_matrix_adapted_iterator<NumericT, SizeT, is_iterator1, is_forward>    self_type;

public:
  typedef self_type     iterator1;
  typedef self_type     iterator2;
  typedef vcl_size_t   size_type;

  const_sparse_matrix_adapted_iterator(std::vector<std::map<SizeT, NumericT> > const & mat, int i, int j)
    : mat_(mat), i_(static_cast<size_type>(i)), j_(static_cast<size_type>(j))
  {
    if (i < 0) //reverse iterator end
    {
      //iter2 = mat_[0].rend();  //reverse iterator end
    }
    else  //i_ is valid
    {
      if (j < 0)
      {
        //iter2 = mat_[i].rend();
      }
      else //j_ is valid
      {
        if (i_ < mat_.size() && mat_[static_cast<vcl_size_t>(i)].size() > 0 )
        {
          //TODO: Start at entry j, not at the beginning
          if (static_cast<int>(mat_[static_cast<vcl_size_t>(i)].rbegin()->first) < j)
            iter2 = mat_[static_cast<vcl_size_t>(i)].end();
          else
            iter2 = mat_[static_cast<vcl_size_t>(i)].begin();
        }
        else if (i_ < mat_.size() && mat_[static_cast<vcl_size_t>(i)].size() == 0)
          iter2 = mat_[static_cast<vcl_size_t>(i)].end();
        else //i is out of range -> end iterator requested
          iter2 = mat_.back().end(); //forward iterator end
      }
    }
  }

  NumericT operator*(void) const
  {
    bool flag_iterator1 = is_iterator1; // avoid unreachable code warnings without specializing template
    if (flag_iterator1)
    {
      typedef typename std::map<SizeT, NumericT>::const_iterator  col_iterator;

      col_iterator colit = mat_[i_].find(static_cast<unsigned int>(j_));

      if (colit != mat_[i_].end())
        return colit->second;
      return 0.0;
    }
    else
      return iter2->second;
  }

  self_type & operator++(void)
  {
    bool flag_iterator1 = is_iterator1; // avoid unreachable code warnings without specializing template
    bool flag_forward   = is_forward;
    if (flag_iterator1)
    {
      if (flag_forward)
        ++i_;
      else
        --i_;
    }
    else
      ++iter2;
    return *this;
  }
  self_type operator++(int) { self_type tmp = *this; ++(*this); return tmp; }

  self_type operator+=(SizeT offset)
  {
    bool flag_iterator1 = is_iterator1; // avoid unreachable code warnings without specializing template
    bool flag_forward   = is_forward;
    if (flag_iterator1)
    {
      if (flag_forward)
        i_ += offset;
      else
        i_ -= offset;
    }
    else
    {
      for (SizeT k=0; k<offset; ++k)
        ++iter2;  //Note: User must ensure that this is always valid...
    }
    return *this;
  }

  bool operator==(self_type const & other) const
  {
    bool flag_iterator1 = is_iterator1; // avoid unreachable code warnings without specializing template
    return flag_iterator1 ? (i_ == other.i_) : (iter2 == other.iter2);
  }

  bool operator!=(self_type const & other) const { return !(*this == other); }

  size_type index1() const { return i_; }
  size_type index2() const
  {
    bool flag_iterator1 = is_iterator1; // avoid unreachable code warnings without specializing template
    if (flag_iterator1)
      return 0;
    else
      return iter2->first;
  }

  const_sparse_matrix_adapted_iterator<NumericT, SizeT, !is_iterator1, true> begin() const
  {
    return const_sparse_matrix_adapted_iterator<NumericT, SizeT, !is_iterator1, true>(mat_, static_cast<int>(i_), 0);
  }
  const_sparse_matrix_adapted_iterator<NumericT, SizeT, !is_iterator1, true> end() const
  {
    int end_ = static_cast<int>(mat_[i_].size());
    if (end_ > 0)
      end_ = static_cast<int>(mat_[i_].rbegin()->first);
    return const_sparse_matrix_adapted_iterator<NumericT, SizeT, !is_iterator1, true>(mat_, static_cast<int>(i_), end_ + 1);
  }

private:
  std::vector<std::map<SizeT, NumericT> > const & mat_;
  typename std::map<SizeT, NumericT>::const_iterator iter2;
  size_type i_;
  size_type j_;
};

/** @brief Adapts a constant sparse matrix type made up from std::vector<std::map<SizeT, NumericT> > to basic ublas-compatibility.
*
*  @tparam NumericT   either float or double
*/
template<typename NumericT, typename SizeT = unsigned int>
class const_sparse_matrix_adapter
{
public:
  typedef const_sparse_matrix_adapted_iterator<NumericT, SizeT, true, true>      const_iterator1;
  typedef const_sparse_matrix_adapted_iterator<NumericT, SizeT, false, true>     const_iterator2;

  typedef const_sparse_matrix_adapted_iterator<NumericT, SizeT, true, false>   const_reverse_iterator1;
  typedef NumericT    value_type;
  typedef vcl_size_t   size_type;

  const_sparse_matrix_adapter(std::vector<std::map<SizeT, NumericT> > const & mat)
    : mat_(mat), size1_(mat_.size()), size2_(mat_.size()) {}

  const_sparse_matrix_adapter(std::vector<std::map<SizeT, NumericT> > const & mat, size_type num_rows, size_type num_cols)
    : mat_(mat), size1_(num_rows), size2_(num_cols) {}

  size_type size1() const { return size1_; }
  size_type size2() const { return size2_; }

  const_iterator1 begin1() const { return const_iterator1(mat_, 0, 0); }
  const_iterator1 end1() const   { return const_iterator1(mat_, static_cast<int>(size1()), static_cast<int>(size2())); }

  const_reverse_iterator1 rbegin1() const { return const_reverse_iterator1(mat_, static_cast<int>(size1() - 1), 0); }
  const_reverse_iterator1 rend1() const   { return const_reverse_iterator1(mat_, -1, static_cast<int>(size2())); }

  const_iterator2 begin2() const { return const_iterator2(mat_, 0, 0); }
  const_iterator2 end2() const   { return const_iterator2(mat_, size1(), size2()); }

  NumericT operator()(SizeT i, SizeT j) const
  {
    typedef typename std::map<SizeT, NumericT>::const_iterator  col_iterator;

    col_iterator colit = mat_[i].find(j);

    if (colit != mat_[i].end())
      return colit->second;
    return 0.0;
  }

private:
  std::vector<std::map<SizeT, NumericT> > const & mat_;
  size_type size1_;
  size_type size2_;
};


/** @brief A non-const iterator for sparse matrices of type std::vector<std::map<SizeT, NumericT> >
*
*  The iterator behaves like ublas iterators. Attention: Iteration along first columns and then rows via .begin() is untested! Reverse iterators are missing!
*
*  @tparam NumericT     either float or double
*  @tparam is_iterator1   if true, this iterator iterates along increasing row indices, otherwise along increasiong column indices
*/
template<typename NumericT, typename SizeT, bool is_iterator1>
class sparse_matrix_adapted_iterator
{
  typedef sparse_matrix_adapted_iterator<NumericT, SizeT, is_iterator1>    self_type;

public:
  typedef self_type     iterator1;
  typedef self_type     iterator2;
  typedef vcl_size_t   size_type;

  sparse_matrix_adapted_iterator(std::vector<std::map<SizeT, NumericT> > & mat, int i, int j)
    : mat_(mat), i_(static_cast<size_type>(i)), j_(static_cast<size_type>(j))
  {
    if (i < 0) //reverse iterator end
    {
      //iter2 = mat_[0].rend();  //reverse iterator end
    }
    else  //_i is valid
    {
      if (j < 0)
      {
        //iter2 = mat[i]_.rend();
      }
      else //_j is valid
      {
        if (i_ < mat_.size() && mat_[i_].size() > 0 )
        {
          //TODO: Start at entry j, not at the beginning
          if (static_cast<int>(mat_[i_].rbegin()->first) < j)
            iter2 = mat_[i_].end();
          else
            iter2 = mat_[i_].begin();
        }
        else if (i_ < mat_.size() && mat_[i_].size() == 0)
          iter2 = mat_[i_].end();
        else //i is out of range -> end iterator requested
          iter2 = mat_.back().end(); //forward iterator end
      }
    }
  }

  NumericT & operator*(void)
  {
    bool flag_iterator1 = is_iterator1; // avoid unreachable code warnings without specializing template
    if (flag_iterator1)
    {
      return mat_[i_][static_cast<SizeT>(j_)];
    }
    else
      return iter2->second;
  }

  self_type & operator++(void)
  {
    bool flag_iterator1 = is_iterator1; // avoid unreachable code warnings without specializing template
    if (flag_iterator1)
      ++i_;
    else
      ++iter2;
    return *this;
  }
  self_type operator++(int) { self_type tmp = *this; ++(*this); return tmp; }

  self_type operator+=(size_type offset)
  {
    bool flag_iterator1 = is_iterator1; // avoid unreachable code warnings without specializing template
    if (flag_iterator1)
      i_ += offset;
    else
    {
      for (size_type k=0; k<offset; ++k)
        ++iter2;  //Note: User must ensure that this is always valid...
    }
    return *this;
  }

  bool operator==(self_type const & other) const
  {
    bool flag_iterator1 = is_iterator1; // avoid unreachable code warnings without specializing template
    if (flag_iterator1)
      return (i_ == other.i_);
    return (iter2 == other.iter2);
  }
  bool operator!=(self_type const & other) const { return !(*this == other); }

  size_type index1() const { return i_; }
  size_type index2() const
  {
    bool flag_iterator1 = is_iterator1; // avoid unreachable code warnings without specializing template
    if (flag_iterator1)
      return 0;
    else
      return iter2->first;
  }

  sparse_matrix_adapted_iterator<NumericT, SizeT, !is_iterator1> begin() const
  {
    return sparse_matrix_adapted_iterator<NumericT, SizeT, !is_iterator1>(mat_, static_cast<int>(i_), 0);
  }
  sparse_matrix_adapted_iterator<NumericT, SizeT, !is_iterator1> end() const
  {
    int end_ = static_cast<int>(mat_[i_].size());
    if (end_ > 0)
      end_ = static_cast<int>(mat_[i_].rbegin()->first);
    return sparse_matrix_adapted_iterator<NumericT, SizeT, !is_iterator1>(mat_, static_cast<int>(i_), end_ + 1);
  }

private:
  std::vector<std::map<SizeT, NumericT> > & mat_;
  typename std::map<SizeT, NumericT>::iterator iter2;
  size_type i_;
  size_type j_;
};



/** @brief Adapts a non-const sparse matrix type made up from std::vector<std::map<SizeT, NumericT> > to basic ublas-compatibility.
*
*  @tparam NumericT   either float or double
*/
template<typename NumericT, typename SizeT = unsigned int>
class sparse_matrix_adapter : public const_sparse_matrix_adapter<NumericT, SizeT>
{
  typedef const_sparse_matrix_adapter<NumericT, SizeT>   BaseType;
public:
  typedef sparse_matrix_adapted_iterator<NumericT, SizeT, true>      iterator1;
  typedef sparse_matrix_adapted_iterator<NumericT, SizeT, false>     iterator2;
  typedef const_sparse_matrix_adapted_iterator<NumericT, SizeT, true, true>      const_iterator1;
  typedef const_sparse_matrix_adapted_iterator<NumericT, SizeT, false, true>     const_iterator2;
  typedef SizeT                                              size_type;

  sparse_matrix_adapter(std::vector<std::map<SizeT, NumericT> > & mat)
    : BaseType(mat), mat_(mat), size1_(static_cast<SizeT>(mat_.size())), size2_(static_cast<SizeT>(mat_.size())) {}

  sparse_matrix_adapter(std::vector<std::map<SizeT, NumericT> > & mat,
                        vcl_size_t num_rows,
                        vcl_size_t num_cols)
    : BaseType(mat, num_rows, num_cols), mat_(mat), size1_(static_cast<size_type>(num_rows)), size2_(static_cast<size_type>(num_cols)) {}

  iterator1 begin1() { return iterator1(mat_, 0, 0); }
  iterator1 end1() { return iterator1(mat_, static_cast<int>(mat_.size()), static_cast<int>(mat_.back().size())); }

  const_iterator1 begin1() const { return const_iterator1(mat_, 0, 0); }
  const_iterator1 end1() const   { return const_iterator1(mat_, static_cast<int>(size1()), static_cast<int>(size2())); }

  iterator2 begin2() { return iterator2(mat_, 0, 0); }
  iterator2 end2() { return iterator2(mat_, mat_.size(), mat_.back().size()); }

  const_iterator2 begin2() const { return const_iterator2(mat_, 0, 0); }
  const_iterator2 end2() const   { return const_iterator2(mat_, size1(), size2()); }

  NumericT & operator()(vcl_size_t i, vcl_size_t j) { return mat_[i][static_cast<size_type>(j)]; }

  void resize(vcl_size_t i, vcl_size_t j, bool preserve = true)
  {
    if (i>0)
      mat_.resize(i);
    if (!preserve)
      clear();

    size1_ = static_cast<size_type>(i);
    size2_ = static_cast<size_type>(j);
  }

  void clear()
  {
    for (size_type i=0; i<mat_.size(); ++i)
      mat_[i].clear();
  }

  size_type size1() { return size1_; }
  size_type size1() const { return size1_; } //Note: Due to name hiding it is not sufficient to have it in the base class

  //assume a square matrix
  size_type size2() { return size2_; }
  size_type size2() const { return size2_; } //Note: Due to name hiding it is not sufficient to have it in the base class

private:
  std::vector<std::map<SizeT, NumericT> > & mat_;
  size_type size1_;
  size_type size2_;
};

}
}
#endif