/usr/include/viennacl/vandermonde_matrix.hpp is in libviennacl-dev 1.7.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | #ifndef VIENNACL_VANDERMONDE_MATRIX_HPP
#define VIENNACL_VANDERMONDE_MATRIX_HPP
/* =========================================================================
Copyright (c) 2010-2016, Institute for Microelectronics,
Institute for Analysis and Scientific Computing,
TU Wien.
Portions of this software are copyright by UChicago Argonne, LLC.
-----------------
ViennaCL - The Vienna Computing Library
-----------------
Project Head: Karl Rupp rupp@iue.tuwien.ac.at
(A list of authors and contributors can be found in the manual)
License: MIT (X11), see file LICENSE in the base directory
============================================================================= */
#include <cmath>
/** @file vandermonde_matrix.hpp
@brief Implementation of the vandermonde_matrix class for efficient manipulation of Vandermonde matrices. Experimental.
*/
#include "viennacl/forwards.h"
#include "viennacl/vector.hpp"
#include "viennacl/ocl/backend.hpp"
#include "viennacl/fft.hpp"
#include "viennacl/linalg/vandermonde_matrix_operations.hpp"
namespace viennacl
{
/** @brief A Vandermonde matrix class
*
* @tparam NumericT The underlying scalar type (either float or double)
* @tparam AlignmentV The internal memory size is given by (size()/AlignmentV + 1) * AlignmentV. AlignmentV must be a power of two. Best values or usually 4, 8 or 16, higher values are usually a waste of memory.
*/
template<class NumericT, unsigned int AlignmentV>
class vandermonde_matrix
{
public:
typedef viennacl::backend::mem_handle handle_type;
typedef scalar<typename viennacl::tools::CHECK_SCALAR_TEMPLATE_ARGUMENT<NumericT>::ResultType> value_type;
/**
* @brief The default constructor. Does not allocate any memory.
*
*/
explicit vandermonde_matrix() {}
/**
* @brief Creates the matrix with the given size
*
* @param rows Number of rows of the matrix
* @param cols Number of columns of the matrix
*/
explicit vandermonde_matrix(vcl_size_t rows, vcl_size_t cols) : elements_(rows)
{
assert(rows == cols && bool("Vandermonde matrix must be square in this release!"));
(void)cols; // avoid 'unused parameter' warning in optimized builds
}
/** @brief Resizes the matrix.
* Existing entries can be preserved
*
* @param sz New size of matrix
* @param preserve If true, existing values are preserved.
*/
void resize(vcl_size_t sz, bool preserve = true)
{
elements_.resize(sz, preserve);
}
/** @brief Returns the OpenCL handle
*
* @return OpenCL handle
*/
handle_type const & handle() const { return elements_.handle(); }
/**
* @brief Returns an internal viennacl::vector, which represents a Vandermonde matrix elements
*
*/
viennacl::vector<NumericT, AlignmentV> & elements() { return elements_; }
viennacl::vector<NumericT, AlignmentV> const & elements() const { return elements_; }
/**
* @brief Returns the number of rows of the matrix
*/
vcl_size_t size1() const { return elements_.size(); }
/**
* @brief Returns the number of columns of the matrix
*/
vcl_size_t size2() const { return elements_.size(); }
/** @brief Returns the internal size of matrix representtion.
* Usually required for launching OpenCL kernels only
*
* @return Internal size of matrix representation
*/
vcl_size_t internal_size() const { return elements_.internal_size(); }
/**
* @brief Read-write access to a base element of the matrix
*
* @param row_index Row index of accessed element
* @return Proxy for matrix entry
*/
entry_proxy<NumericT> operator()(vcl_size_t row_index)
{
return elements_[row_index];
}
/**
* @brief Read access to a element of the matrix
*
* @param row_index Row index of accessed element
* @param col_index Column index of accessed element
* @return Proxy for matrix entry
*/
NumericT operator()(vcl_size_t row_index, vcl_size_t col_index) const
{
assert(row_index < size1() && col_index < size2() && bool("Invalid access"));
return pow(elements_[row_index], static_cast<int>(col_index));
}
private:
vandermonde_matrix(vandermonde_matrix const &) {}
vandermonde_matrix & operator=(vandermonde_matrix const & t);
viennacl::vector<NumericT, AlignmentV> elements_;
};
/** @brief Copies a Vandermonde matrix from the std::vector to the OpenCL device (either GPU or multi-core CPU)
*
*
* @param cpu_vec A std::vector on the host.
* @param gpu_mat A vandermonde_matrix from ViennaCL
*/
template<typename NumericT, unsigned int AlignmentV>
void copy(std::vector<NumericT>& cpu_vec, vandermonde_matrix<NumericT, AlignmentV>& gpu_mat)
{
assert(cpu_vec.size() == gpu_mat.size1() && bool("Size mismatch"));
copy(cpu_vec, gpu_mat.elements());
}
/** @brief Copies a Vandermonde matrix from the OpenCL device (either GPU or multi-core CPU) to the std::vector
*
*
* @param gpu_mat A vandermonde_matrix from ViennaCL
* @param cpu_vec A std::vector on the host.
*/
template<typename NumericT, unsigned int AlignmentV>
void copy(vandermonde_matrix<NumericT, AlignmentV>& gpu_mat, std::vector<NumericT>& cpu_vec)
{
assert(cpu_vec.size() == gpu_mat.size1() && bool("Size mismatch"));
copy(gpu_mat.elements(), cpu_vec);
}
/** @brief Copies a Vandermonde matrix from the OpenCL device (either GPU or multi-core CPU) to the matrix-like object
*
*
* @param vander_src A vandermonde_matrix from ViennaCL
* @param com_dst A matrix-like object
*/
template<typename NumericT, unsigned int AlignmentV, typename MatrixT>
void copy(vandermonde_matrix<NumericT, AlignmentV>& vander_src, MatrixT& com_dst)
{
assert(vander_src.size1() == viennacl::traits::size1(com_dst) && bool("Size mismatch"));
assert(vander_src.size2() == viennacl::traits::size2(com_dst) && bool("Size mismatch"));
vcl_size_t size = vander_src.size1();
std::vector<NumericT> tmp(size);
copy(vander_src, tmp);
for (vcl_size_t i = 0; i < size; i++)
for (vcl_size_t j = 0; j < size; j++)
com_dst(i, j) = std::pow(tmp[i], static_cast<int>(j));
}
/** @brief Copies a the matrix-like object to the Vandermonde matrix from the OpenCL device (either GPU or multi-core CPU)
*
*
* @param com_src A std::vector on the host
* @param vander_dst A vandermonde_matrix from ViennaCL
*/
template<typename NumericT, unsigned int AlignmentV, typename MatrixT>
void copy(MatrixT& com_src, vandermonde_matrix<NumericT, AlignmentV>& vander_dst)
{
assert( (vander_dst.size1() == 0 || vander_dst.size1() == viennacl::traits::size1(com_src)) && bool("Size mismatch"));
assert( (vander_dst.size2() == 0 || vander_dst.size2() == viennacl::traits::size2(com_src)) && bool("Size mismatch"));
vcl_size_t size = vander_dst.size1();
std::vector<NumericT> tmp(size);
for (vcl_size_t i = 0; i < size; i++)
tmp[i] = com_src(i, 1);
copy(tmp, vander_dst);
}
/*template<typename NumericT, unsigned int AlignmentV, unsigned int VECTOR_AlignmentV>
void prod_impl(vandermonde_matrix<NumericT, AlignmentV>& mat,
vector<NumericT, VECTOR_AlignmentV>& vec,
vector<NumericT, VECTOR_AlignmentV>& result) {
assert(mat.size1() == vec.size());
fft::vandermonde_prod<NumericT>(mat.handle(), vec.handle(), result.handle(), mat.size1());
} */
/** @brief Prints the matrix. Output is compatible to boost::numeric::ublas
*
* @param s STL output stream
* @param gpu_matrix A ViennaCL Vandermonde matrix
*/
template<class NumericT, unsigned int AlignmentV>
std::ostream & operator<<(std::ostream& s, vandermonde_matrix<NumericT, AlignmentV>& gpu_matrix)
{
vcl_size_t size = gpu_matrix.size1();
std::vector<NumericT> tmp(size);
copy(gpu_matrix, tmp);
s << "[" << size << "," << size << "](\n";
for (vcl_size_t i = 0; i < size; i++)
{
s << "(";
for (vcl_size_t j = 0; j < size; j++)
{
s << pow(tmp[i], static_cast<NumericT>(j));
if (j < (size - 1))
s << ",";
}
s << ")";
}
s << ")";
return s;
}
//
// Specify available operations:
//
/** \cond */
namespace linalg
{
namespace detail
{
// x = A * y
template<typename T, unsigned int A>
struct op_executor<vector_base<T>, op_assign, vector_expression<const vandermonde_matrix<T, A>, const vector_base<T>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const vandermonde_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
{
// check for the special case x = A * x
if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
{
viennacl::vector<T> temp(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), temp);
lhs = temp;
}
else
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), lhs);
}
};
template<typename T, unsigned int A>
struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const vandermonde_matrix<T, A>, const vector_base<T>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const vandermonde_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
{
viennacl::vector<T> temp(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), temp);
lhs += temp;
}
};
template<typename T, unsigned int A>
struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const vandermonde_matrix<T, A>, const vector_base<T>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const vandermonde_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
{
viennacl::vector<T> temp(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), temp);
lhs -= temp;
}
};
// x = A * vec_op
template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
struct op_executor<vector_base<T>, op_assign, vector_expression<const vandermonde_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const vandermonde_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
{
viennacl::vector<T> temp(rhs.rhs());
viennacl::linalg::prod_impl(rhs.lhs(), temp, lhs);
}
};
// x = A * vec_op
template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const vandermonde_matrix<T, A>, vector_expression<const LHS, const RHS, OP>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const vandermonde_matrix<T, A>, vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
{
viennacl::vector<T> temp(rhs.rhs());
viennacl::vector<T> temp_result(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
lhs += temp_result;
}
};
// x = A * vec_op
template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const vandermonde_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
{
static void apply(vector_base<T> & lhs, vector_expression<const vandermonde_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
{
viennacl::vector<T> temp(rhs.rhs());
viennacl::vector<T> temp_result(lhs);
viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
lhs -= temp_result;
}
};
} // namespace detail
} // namespace linalg
/** \endcond */
}
#endif // VIENNACL_VANDERMONDE_MATRIX_HPP
|