This file is indexed.

/usr/include/viennacl/vandermonde_matrix.hpp is in libviennacl-dev 1.7.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#ifndef VIENNACL_VANDERMONDE_MATRIX_HPP
#define VIENNACL_VANDERMONDE_MATRIX_HPP

/* =========================================================================
   Copyright (c) 2010-2016, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */

#include <cmath>

/** @file vandermonde_matrix.hpp
    @brief Implementation of the vandermonde_matrix class for efficient manipulation of Vandermonde matrices.  Experimental.
*/

#include "viennacl/forwards.h"
#include "viennacl/vector.hpp"
#include "viennacl/ocl/backend.hpp"

#include "viennacl/fft.hpp"

#include "viennacl/linalg/vandermonde_matrix_operations.hpp"

namespace viennacl
{

/** @brief A Vandermonde matrix class
  *
  * @tparam NumericT   The underlying scalar type (either float or double)
  * @tparam AlignmentV    The internal memory size is given by (size()/AlignmentV + 1) * AlignmentV. AlignmentV must be a power of two. Best values or usually 4, 8 or 16, higher values are usually a waste of memory.
  */
template<class NumericT, unsigned int AlignmentV>
class vandermonde_matrix
{
public:
  typedef viennacl::backend::mem_handle                                                              handle_type;
  typedef scalar<typename viennacl::tools::CHECK_SCALAR_TEMPLATE_ARGUMENT<NumericT>::ResultType>   value_type;

  /**
       * @brief The default constructor. Does not allocate any memory.
       *
       */
  explicit vandermonde_matrix() {}

  /**
       * @brief         Creates the matrix with the given size
       *
       * @param rows      Number of rows of the matrix
       * @param cols      Number of columns of the matrix
       */
  explicit vandermonde_matrix(vcl_size_t rows, vcl_size_t cols) : elements_(rows)
  {
    assert(rows == cols && bool("Vandermonde matrix must be square in this release!"));
    (void)cols;  // avoid 'unused parameter' warning in optimized builds
  }

  /** @brief Resizes the matrix.
      *   Existing entries can be preserved
      *
      * @param sz         New size of matrix
      * @param preserve   If true, existing values are preserved.
      */
  void resize(vcl_size_t sz, bool preserve = true)
  {
    elements_.resize(sz, preserve);
  }

  /** @brief Returns the OpenCL handle
      *
      *   @return OpenCL handle
      */
  handle_type const & handle() const { return elements_.handle(); }

  /**
       * @brief Returns an internal viennacl::vector, which represents a Vandermonde matrix elements
       *
       */
  viennacl::vector<NumericT, AlignmentV> & elements() { return elements_; }
  viennacl::vector<NumericT, AlignmentV> const & elements() const { return elements_; }

  /**
       * @brief Returns the number of rows of the matrix
       */
  vcl_size_t size1() const { return elements_.size(); }

  /**
       * @brief Returns the number of columns of the matrix
       */
  vcl_size_t size2() const { return elements_.size(); }

  /** @brief Returns the internal size of matrix representtion.
      *   Usually required for launching OpenCL kernels only
      *
      *   @return Internal size of matrix representation
      */
  vcl_size_t internal_size() const { return elements_.internal_size(); }

  /**
       * @brief Read-write access to a base element of the matrix
       *
       * @param row_index  Row index of accessed element
       * @return Proxy for matrix entry
       */
  entry_proxy<NumericT> operator()(vcl_size_t row_index)
  {
    return elements_[row_index];
  }

  /**
       * @brief Read access to a element of the matrix
       *
       * @param row_index  Row index of accessed element
       * @param col_index  Column index of accessed element
       * @return Proxy for matrix entry
       */
  NumericT operator()(vcl_size_t row_index, vcl_size_t col_index) const
  {
    assert(row_index < size1() && col_index < size2() && bool("Invalid access"));

    return pow(elements_[row_index], static_cast<int>(col_index));
  }

private:
  vandermonde_matrix(vandermonde_matrix const &) {}
  vandermonde_matrix & operator=(vandermonde_matrix const & t);

  viennacl::vector<NumericT, AlignmentV> elements_;
};

/** @brief Copies a Vandermonde matrix from the std::vector to the OpenCL device (either GPU or multi-core CPU)
  *
  *
  * @param cpu_vec   A std::vector on the host.
  * @param gpu_mat   A vandermonde_matrix from ViennaCL
  */
template<typename NumericT, unsigned int AlignmentV>
void copy(std::vector<NumericT>& cpu_vec, vandermonde_matrix<NumericT, AlignmentV>& gpu_mat)
{
  assert(cpu_vec.size() == gpu_mat.size1()  && bool("Size mismatch"));
  copy(cpu_vec, gpu_mat.elements());
}

/** @brief Copies a Vandermonde matrix from the OpenCL device (either GPU or multi-core CPU) to the std::vector
  *
  *
  * @param gpu_mat   A vandermonde_matrix from ViennaCL
  * @param cpu_vec   A std::vector on the host.
  */
template<typename NumericT, unsigned int AlignmentV>
void copy(vandermonde_matrix<NumericT, AlignmentV>& gpu_mat, std::vector<NumericT>& cpu_vec)
{
  assert(cpu_vec.size() == gpu_mat.size1() && bool("Size mismatch"));
  copy(gpu_mat.elements(), cpu_vec);
}

/** @brief Copies a Vandermonde matrix from the OpenCL device (either GPU or multi-core CPU) to the matrix-like object
  *
  *
  * @param vander_src   A vandermonde_matrix from ViennaCL
  * @param com_dst   A matrix-like object
  */
template<typename NumericT, unsigned int AlignmentV, typename MatrixT>
void copy(vandermonde_matrix<NumericT, AlignmentV>& vander_src, MatrixT& com_dst)
{
  assert(vander_src.size1() == viennacl::traits::size1(com_dst) && bool("Size mismatch"));
  assert(vander_src.size2() == viennacl::traits::size2(com_dst) && bool("Size mismatch"));

  vcl_size_t size = vander_src.size1();
  std::vector<NumericT> tmp(size);
  copy(vander_src, tmp);

  for (vcl_size_t i = 0; i < size; i++)
    for (vcl_size_t j = 0; j < size; j++)
      com_dst(i, j) = std::pow(tmp[i], static_cast<int>(j));

}

/** @brief Copies a the matrix-like object to the Vandermonde matrix from the OpenCL device (either GPU or multi-core CPU)
  *
  *
  * @param com_src   A std::vector on the host
  * @param vander_dst   A vandermonde_matrix from ViennaCL
  */
template<typename NumericT, unsigned int AlignmentV, typename MatrixT>
void copy(MatrixT& com_src, vandermonde_matrix<NumericT, AlignmentV>& vander_dst)
{
  assert( (vander_dst.size1() == 0 || vander_dst.size1() == viennacl::traits::size1(com_src)) && bool("Size mismatch"));
  assert( (vander_dst.size2() == 0 || vander_dst.size2() == viennacl::traits::size2(com_src)) && bool("Size mismatch"));

  vcl_size_t size = vander_dst.size1();
  std::vector<NumericT> tmp(size);

  for (vcl_size_t i = 0; i < size; i++)
    tmp[i] = com_src(i, 1);

  copy(tmp, vander_dst);
}

/*template<typename NumericT, unsigned int AlignmentV, unsigned int VECTOR_AlignmentV>
  void prod_impl(vandermonde_matrix<NumericT, AlignmentV>& mat,
                 vector<NumericT, VECTOR_AlignmentV>& vec,
                 vector<NumericT, VECTOR_AlignmentV>& result) {
      assert(mat.size1() == vec.size());

      fft::vandermonde_prod<NumericT>(mat.handle(), vec.handle(), result.handle(), mat.size1());
  } */

/** @brief Prints the matrix. Output is compatible to boost::numeric::ublas
  *
  * @param s            STL output stream
  * @param gpu_matrix   A ViennaCL Vandermonde matrix
  */
template<class NumericT, unsigned int AlignmentV>
std::ostream & operator<<(std::ostream& s, vandermonde_matrix<NumericT, AlignmentV>& gpu_matrix)
{
  vcl_size_t size = gpu_matrix.size1();
  std::vector<NumericT> tmp(size);
  copy(gpu_matrix, tmp);
  s << "[" << size << "," << size << "](\n";

  for (vcl_size_t i = 0; i < size; i++)
  {
    s << "(";
    for (vcl_size_t j = 0; j < size; j++)
    {
      s << pow(tmp[i], static_cast<NumericT>(j));
      if (j < (size - 1))
        s << ",";
    }
    s << ")";
  }
  s << ")";
  return s;
}


//
// Specify available operations:
//

/** \cond */

namespace linalg
{
namespace detail
{
  // x = A * y
  template<typename T, unsigned int A>
  struct op_executor<vector_base<T>, op_assign, vector_expression<const vandermonde_matrix<T, A>, const vector_base<T>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const vandermonde_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
    {
      // check for the special case x = A * x
      if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
      {
        viennacl::vector<T> temp(lhs);
        viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), temp);
        lhs = temp;
      }
      else
        viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), lhs);
    }
  };

  template<typename T, unsigned int A>
  struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const vandermonde_matrix<T, A>, const vector_base<T>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const vandermonde_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
    {
      viennacl::vector<T> temp(lhs);
      viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), temp);
      lhs += temp;
    }
  };

  template<typename T, unsigned int A>
  struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const vandermonde_matrix<T, A>, const vector_base<T>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const vandermonde_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
    {
      viennacl::vector<T> temp(lhs);
      viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), temp);
      lhs -= temp;
    }
  };


  // x = A * vec_op
  template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
  struct op_executor<vector_base<T>, op_assign, vector_expression<const vandermonde_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const vandermonde_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
    {
      viennacl::vector<T> temp(rhs.rhs());
      viennacl::linalg::prod_impl(rhs.lhs(), temp, lhs);
    }
  };

  // x = A * vec_op
  template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
  struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const vandermonde_matrix<T, A>, vector_expression<const LHS, const RHS, OP>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const vandermonde_matrix<T, A>, vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
    {
      viennacl::vector<T> temp(rhs.rhs());
      viennacl::vector<T> temp_result(lhs);
      viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
      lhs += temp_result;
    }
  };

  // x = A * vec_op
  template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
  struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const vandermonde_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const vandermonde_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
    {
      viennacl::vector<T> temp(rhs.rhs());
      viennacl::vector<T> temp_result(lhs);
      viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
      lhs -= temp_result;
    }
  };

} // namespace detail
} // namespace linalg

/** \endcond */
}

#endif // VIENNACL_VANDERMONDE_MATRIX_HPP