This file is indexed.

/usr/share/lyx/examples/aa_sample.lyx is in lyx-common 2.2.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
#LyX 2.2 created this file. For more info see http://www.lyx.org/
\lyxformat 508
\begin_document
\begin_header
\save_transient_properties true
\origin /systemlyxdir/examples/
\textclass aa
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command bibtex
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 0
\use_package amssymb 0
\use_package cancel 0
\use_package esint 0
\use_package mathdots 1
\use_package mathtools 0
\use_package mhchem 1
\use_package stackrel 0
\use_package stmaryrd 0
\use_package undertilde 0
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 2
\papersides 2
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header

\begin_body

\begin_layout Title
\begin_inset Note Note
status open

\begin_layout Plain Layout

\family roman
\series medium
\size normal
This is an example \SpecialChar LyX
 file for articles to be submitted to the Journal of
 Astronomy & Astrophysics (A&A).
 How to install the A&A \SpecialChar LaTeX
 class to your \SpecialChar LaTeX
 system is explained in 
\begin_inset Flex URL
status open

\begin_layout Plain Layout

http://wiki.lyx.org/Layouts/Astronomy-Astrophysics
\end_layout

\end_inset

.
\begin_inset Newline newline
\end_inset

Depending on the submission state and the abstract layout, you need to use
 different document class options that are listed in the aa manual.
\family default

\begin_inset Newline newline
\end_inset


\family roman
\series default
Note:
\series medium
 If you use accented characters in your document, you must use the predefined
 document class option 
\series default
latin9
\series medium
 in the document settings.
\end_layout

\end_inset


\end_layout

\begin_layout Title
Hydrodynamics of giant planet formation
\end_layout

\begin_layout Subtitle
I.
 Overviewing the 
\begin_inset Formula $\kappa$
\end_inset

-mechanism
\end_layout

\begin_layout Author
G.
 Wuchterl
\begin_inset Flex institutemark
status open

\begin_layout Plain Layout
1
\end_layout

\end_inset


\begin_inset ERT
status collapsed

\begin_layout Plain Layout


\backslash
and 
\end_layout

\end_inset

 C.
 Ptolemy
\begin_inset Flex institutemark
status collapsed

\begin_layout Plain Layout
2
\end_layout

\end_inset


\begin_inset ERT
status collapsed

\begin_layout Plain Layout


\backslash
fnmsep 
\end_layout

\end_inset


\begin_inset Foot
status collapsed

\begin_layout Plain Layout
Just to show the usage of the elements in the author field
\end_layout

\end_inset

 
\begin_inset Note Note
status collapsed

\begin_layout Plain Layout

\backslash
fnmsep is only needed for more than one consecutive notes/marks
\end_layout

\end_inset


\end_layout

\begin_layout Offprint
G.
 Wuchterl
\end_layout

\begin_layout Address
Institute for Astronomy (IfA), University of Vienna, Türkenschanzstrasse
 17, A-1180 Vienna
\begin_inset Newline newline
\end_inset


\begin_inset Flex Email
status open

\begin_layout Plain Layout
wuchterl@amok.ast.univie.ac.at
\end_layout

\end_inset


\begin_inset ERT
status collapsed

\begin_layout Plain Layout


\backslash
and 
\end_layout

\end_inset

University of Alexandria, Department of Geography, ...
\begin_inset Newline newline
\end_inset


\begin_inset Flex Email
status collapsed

\begin_layout Plain Layout
c.ptolemy@hipparch.uheaven.space
\end_layout

\end_inset


\begin_inset Foot
status collapsed

\begin_layout Plain Layout
The university of heaven temporarily does not accept e-mails
\end_layout

\end_inset

 
\end_layout

\begin_layout Date
Received September 15, 1996; accepted March 16, 1997
\end_layout

\begin_layout Abstract (unstructured)
To investigate the physical nature of the `nuc\SpecialChar softhyphen
leated instability' of proto
 giant planets, the stability of layers in static, radiative gas spheres
 is analysed on the basis of Baker's standard one-zone model.
 It is shown that stability depends only upon the equations of state, the
 opacities and the local thermodynamic state in the layer.
 Stability and instability can therefore be expressed in the form of stability
 equations of state which are universal for a given composition.
 The stability equations of state are calculated for solar composition and
 are displayed in the domain 
\begin_inset Formula $-14\leq\lg\rho/[\mathrm{g}\,\mathrm{cm}^{-3}]\leq0$
\end_inset

, 
\begin_inset Formula $8.8\leq\lg e/[\mathrm{erg}\,\mathrm{g}^{-1}]\leq17.7$
\end_inset

.
 These displays may be used to determine the one-zone stability of layers
 in stellar or planetary structure models by directly reading off the value
 of the stability equations for the thermodynamic state of these layers,
 specified by state quantities as density 
\begin_inset Formula $\rho$
\end_inset

, temperature 
\begin_inset Formula $T$
\end_inset

 or specific internal energy 
\begin_inset Formula $e$
\end_inset

.
 Regions of instability in the 
\begin_inset Formula $(\rho,e)$
\end_inset

-plane are described and related to the underlying microphysical processes.
 Vibrational instability is found to be a common phenomenon at temperatures
 lower than the second He ionisation zone.
 The 
\begin_inset Formula $\kappa$
\end_inset

-mechanism is widespread under `cool' conditions.
\begin_inset Note Note
status open

\begin_layout Plain Layout
Citations are not allowed in A&A abstracts.
\end_layout

\end_inset


\begin_inset Note Note
status open

\begin_layout Plain Layout
This is the unstructured abstract type, an example for the structured abstract
 is in the 
\family sans
aa.lyx
\family default
 template file that comes with \SpecialChar LyX
.
\end_layout

\end_inset


\end_layout

\begin_layout Keywords
giant planet formation – 
\begin_inset Formula $\kappa$
\end_inset

-mechanism – stability of gas spheres
\end_layout

\begin_layout Section
Introduction
\end_layout

\begin_layout Standard
In the 
\emph on
nucleated instability
\emph default
 (also called core instability) hypothesis of giant planet formation, a
 critical mass for static core envelope protoplanets has been found.
 Mizuno (
\begin_inset CommandInset citation
LatexCommand cite
key "Eisenstein2005"

\end_inset

) determined the critical mass of the core to be about 
\begin_inset Formula $12\,M_{\oplus}$
\end_inset

 (
\begin_inset Formula $M_{\oplus}=5.975\,10^{27}\,\mathrm{g}$
\end_inset

 is the Earth mass), which is independent of the outer boundary conditions
 and therefore independent of the location in the solar nebula.
 This critical value for the core mass corresponds closely to the cores
 of today's giant planets.
\end_layout

\begin_layout Standard
Although no hydrodynamical study has been available many workers conjectured
 that a collapse or rapid contraction will ensue after accumulating the
 critical mass.
 The main motivation for this article is to investigate the stability of
 the static envelope at the critical mass.
 With this aim the local, linear stability of static radiative gas spheres
 is investigated on the basis of Baker's (
\begin_inset CommandInset citation
LatexCommand cite
key "Abernethy2003"

\end_inset

) standard one-zone model.
\end_layout

\begin_layout Standard
Phenomena similar to the ones described above for giant planet formation
 have been found in hydrodynamical models concerning star formation where
 protostellar cores explode (Tscharnuter 
\begin_inset CommandInset citation
LatexCommand cite
key "Cotton1999"

\end_inset

, Balluch 
\begin_inset CommandInset citation
LatexCommand cite
key "Mena2000"

\end_inset

), whereas earlier studies found quasi-steady collapse flows.
 The similarities in the (micro)physics, i.
\begin_inset space \thinspace{}
\end_inset

g.
\begin_inset space \space{}
\end_inset

constitutive relations of protostellar cores and protogiant planets serve
 as a further motivation for this study.
\end_layout

\begin_layout Section
Baker's standard one-zone model
\end_layout

\begin_layout Standard
\begin_inset Float figure
wide true
sideways false
status open

\begin_layout Plain Layout
\begin_inset Caption Standard

\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:FigGam"

\end_inset

Adiabatic exponent 
\begin_inset Formula $\Gamma_{1}$
\end_inset

.
 
\begin_inset Formula $\Gamma_{1}$
\end_inset

 is plotted as a function of 
\begin_inset Formula $\lg$
\end_inset

 internal energy 
\begin_inset Formula $[\mathrm{erg}\,\mathrm{g}^{-1}]$
\end_inset

 and 
\begin_inset Formula $\lg$
\end_inset

 density 
\begin_inset Formula $[\mathrm{g}\,\mathrm{cm}^{-3}]$
\end_inset


\end_layout

\end_inset


\end_layout

\end_inset

 In this section the one-zone model of Baker (
\begin_inset CommandInset citation
LatexCommand cite
key "Abernethy2003"

\end_inset

), originally used to study the Cepheı̈d pulsation mechanism, will be briefly
 reviewed.
 The resulting stability criteria will be rewritten in terms of local state
 variables, local timescales and constitutive relations.
\end_layout

\begin_layout Standard
Baker (
\begin_inset CommandInset citation
LatexCommand cite
key "Abernethy2003"

\end_inset

) investigates the stability of thin layers in self-gravitating, spherical
 gas clouds with the following properties: 
\end_layout

\begin_layout Itemize
hydrostatic equilibrium, 
\end_layout

\begin_layout Itemize
thermal equilibrium, 
\end_layout

\begin_layout Itemize
energy transport by grey radiation diffusion.
 
\end_layout

\begin_layout Standard
\noindent
For the one-zone-model Baker obtains necessary conditions for dynamical,
 secular and vibrational (or pulsational) stability (Eqs.
\begin_inset space \space{}
\end_inset

(34a,
\begin_inset space \thinspace{}
\end_inset

b,
\begin_inset space \thinspace{}
\end_inset

c) in Baker 
\begin_inset CommandInset citation
LatexCommand cite
key "Abernethy2003"

\end_inset

).
 Using Baker's notation:
\end_layout

\begin_layout Standard
\align left
\begin_inset Formula 
\begin{eqnarray*}
M_{r} &  & \textrm{mass internal to the radius }r\\
m &  & \textrm{mass of the zone}\\
r_{0} &  & \textrm{unperturbed zone radius}\\
\rho_{0} &  & \textrm{unperturbed density in the zone}\\
T_{0} &  & \textrm{unperturbed temperature in the zone}\\
L_{r0} &  & \textrm{unperturbed luminosity}\\
E_{\textrm{th}} &  & \textrm{thermal energy of the zone}
\end{eqnarray*}

\end_inset

 
\end_layout

\begin_layout Standard
\noindent
and with the definitions of the 
\emph on
local cooling time
\emph default
 (see Fig.
\begin_inset space ~
\end_inset


\begin_inset CommandInset ref
LatexCommand ref
reference "fig:FigGam"

\end_inset

) 
\begin_inset Formula 
\begin{equation}
\tau_{\mathrm{co}}=\frac{E_{\mathrm{th}}}{L_{r0}}\,,
\end{equation}

\end_inset

 and the 
\emph on
local free-fall time
\emph default

\begin_inset Formula 
\begin{equation}
\tau_{\mathrm{ff}}=\sqrt{\frac{3\pi}{32G}\frac{4\pi r_{0}^{3}}{3M_{\mathrm{r}}}}\,,
\end{equation}

\end_inset

 Baker's 
\begin_inset Formula $K$
\end_inset

 and 
\begin_inset Formula $\sigma_{0}$
\end_inset

 have the following form: 
\begin_inset Formula 
\begin{eqnarray}
\sigma_{0} & = & \frac{\pi}{\sqrt{8}}\frac{1}{\tau_{\mathrm{ff}}}\\
K & = & \frac{\sqrt{32}}{\pi}\frac{1}{\delta}\frac{\tau_{\mathrm{ff}}}{\tau_{\mathrm{co}}}\,;
\end{eqnarray}

\end_inset

 where 
\begin_inset Formula $E_{\mathrm{th}}\approx m(P_{0}/{\rho_{0}})$
\end_inset

 has been used and 
\begin_inset Formula 
\begin{equation}
\begin{array}{l}
\delta=-\left(\frac{\partial\ln\rho}{\partial\ln T}\right)_{P}\\
e=mc^{2}
\end{array}
\end{equation}

\end_inset

 is a thermodynamical quantity which is of order 
\begin_inset Formula $1$
\end_inset

 and equal to 
\begin_inset Formula $1$
\end_inset

 for nonreacting mixtures of classical perfect gases.
 The physical meaning of 
\begin_inset Formula $\sigma_{0}$
\end_inset

 and 
\begin_inset Formula $K$
\end_inset

 is clearly visible in the equations above.
 
\begin_inset Formula $\sigma_{0}$
\end_inset

 represents a frequency of the order one per free-fall time.
 
\begin_inset Formula $K$
\end_inset

 is proportional to the ratio of the free-fall time and the cooling time.
 Substituting into Baker's criteria, using thermodynamic identities and
 definitions of thermodynamic quantities, 
\begin_inset Formula 
\[
\Gamma_{1}=\left(\frac{\partial\ln P}{\partial\ln\rho}\right)_{S}\,,\;\chi_{\rho}^{}=\left(\frac{\partial\ln P}{\partial\ln\rho}\right)_{T}\,,\;\kappa_{P}^{}=\left(\frac{\partial\ln\kappa}{\partial\ln P}\right)_{T}
\]

\end_inset


\begin_inset Formula 
\[
\nabla_{\mathrm{ad}}=\left(\frac{\partial\ln T}{\partial\ln P}\right)_{S}\,,\;\chi_{T}^{}=\left(\frac{\partial\ln P}{\partial\ln T}\right)_{\rho}\,,\;\kappa_{T}^{}=\left(\frac{\partial\ln\kappa}{\partial\ln T}\right)_{T}
\]

\end_inset

 one obtains, after some pages of algebra, the conditions for 
\emph on
stability
\emph default
 given below: 
\begin_inset Formula 
\begin{eqnarray}
\frac{\pi^{2}}{8}\frac{1}{\tau_{\mathrm{ff}}^{2}}(3\Gamma_{1}-4) & > & 0\label{ZSDynSta}\\
\frac{\pi^{2}}{\tau_{\mathrm{co}}\tau_{\mathrm{ff}}^{2}}\Gamma_{1}\nabla_{\mathrm{ad}}\left[\frac{1-3/4\chi_{\rho}^{}}{\chi_{T}^{}}(\kappa_{T}^{}-4)+\kappa_{P}^{}+1\right] & > & 0\label{ZSSecSta}\\
\frac{\pi^{2}}{4}\frac{3}{\tau_{\mathrm{co}}\tau_{\mathrm{ff}}^{2}}\Gamma_{1}^{2}\,\nabla_{\mathrm{ad}}\left[4\nabla_{\mathrm{ad}}-(\nabla_{\mathrm{ad}}\kappa_{T}^{}+\kappa_{P}^{})-\frac{4}{3\Gamma_{1}}\right] & > & 0\label{ZSVibSta}
\end{eqnarray}

\end_inset

 For a physical discussion of the stability criteria see Baker (
\begin_inset CommandInset citation
LatexCommand cite
key "Abernethy2003"

\end_inset

) or Cox (
\begin_inset CommandInset citation
LatexCommand cite
key "Parkin2005"

\end_inset

).
\end_layout

\begin_layout Standard
We observe that these criteria for dynamical, secular and vibrational stability,
 respectively, can be factorized into 
\end_layout

\begin_layout Enumerate
a factor containing local timescales only, 
\end_layout

\begin_layout Enumerate
a factor containing only constitutive relations and their derivatives.
 
\end_layout

\begin_layout Standard
The first factors, depending on only timescales, are positive by definition.
 The signs of the left hand sides of the inequalities
\begin_inset space ~
\end_inset

(
\begin_inset CommandInset ref
LatexCommand ref
reference "ZSDynSta"

\end_inset

), (
\begin_inset CommandInset ref
LatexCommand ref
reference "ZSSecSta"

\end_inset

) and (
\begin_inset CommandInset ref
LatexCommand ref
reference "ZSVibSta"

\end_inset

) therefore depend exclusively on the second factors containing the constitutive
 relations.
 Since they depend only on state variables, the stability criteria themselves
 are 
\emph on
 functions of the thermodynamic state in the local zone
\emph default
.
 The one-zone stability can therefore be determined from a simple equation
 of state, given for example, as a function of density and temperature.
 Once the microphysics, i.
\begin_inset space \thinspace{}
\end_inset

g.
\begin_inset space \space{}
\end_inset

the thermodynamics and opacities (see Table
\begin_inset space ~
\end_inset


\begin_inset CommandInset ref
LatexCommand ref
reference "tab:KapSou"

\end_inset

), are specified (in practice by specifying a chemical composition) the
 one-zone stability can be inferred if the thermodynamic state is specified.
 The zone – or in other words the layer – will be stable or unstable in
 whatever object it is imbedded as long as it satisfies the one-zone-model
 assumptions.
 Only the specific growth rates (depending upon the time scales) will be
 different for layers in different objects.
\end_layout

\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open

\begin_layout Plain Layout
\begin_inset Caption Standard

\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "tab:KapSou"

\end_inset

Opacity sources
\end_layout

\end_inset


\end_layout

\begin_layout Plain Layout
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="4" columns="2">
<features tabularvalignment="middle">
<column alignment="left" valignment="top" width="0pt">
<column alignment="left" valignment="top" width="0pt">
<row>
<cell alignment="center" valignment="top" topline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Source
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
\begin_inset Formula $T/[\textrm{K}]$
\end_inset


\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Yorke 1979, Yorke 1980a
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
\begin_inset Formula $\leq1700^{\textrm{a}}$
\end_inset


\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Krügel 1971
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
\begin_inset Formula $1700\leq T\leq5000$
\end_inset

 
\end_layout

\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" bottomline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
Cox & Stewart 1969
\end_layout

\end_inset
</cell>
<cell alignment="center" valignment="top" bottomline="true" usebox="none">
\begin_inset Text

\begin_layout Plain Layout
\begin_inset Formula $5000\leq$
\end_inset


\end_layout

\end_inset
</cell>
</row>
</lyxtabular>

\end_inset


\end_layout

\begin_layout Plain Layout
\begin_inset Formula $^{\textrm{a}}$
\end_inset

This is footnote a
\end_layout

\end_inset

 We will now write down the sign (and therefore stability) determining parts
 of the left-hand sides of the inequalities (
\begin_inset CommandInset ref
LatexCommand ref
reference "ZSDynSta"

\end_inset

), (
\begin_inset CommandInset ref
LatexCommand ref
reference "ZSSecSta"

\end_inset

) and (
\begin_inset CommandInset ref
LatexCommand ref
reference "ZSVibSta"

\end_inset

) and thereby obtain 
\emph on
stability equations of state
\emph default
.
\end_layout

\begin_layout Standard
The sign determining part of inequality
\begin_inset space ~
\end_inset

(
\begin_inset CommandInset ref
LatexCommand ref
reference "ZSDynSta"

\end_inset

) is 
\begin_inset Formula $3\Gamma_{1}-4$
\end_inset

 and it reduces to the criterion for dynamical stability 
\begin_inset Formula 
\begin{equation}
\Gamma_{1}>\frac{4}{3}\,\cdot
\end{equation}

\end_inset

 Stability of the thermodynamical equilibrium demands 
\begin_inset Formula 
\begin{equation}
\chi_{\rho}^{}>0,\;\;c_{v}>0\,,
\end{equation}

\end_inset

 and 
\begin_inset Formula 
\begin{equation}
\chi_{T}^{}>0
\end{equation}

\end_inset

 holds for a wide range of physical situations.
 With 
\begin_inset Formula 
\begin{eqnarray}
\Gamma_{3}-1=\frac{P}{\rho T}\frac{\chi_{T}^{}}{c_{v}} & > & 0\\
\Gamma_{1}=\chi_{\rho}^{}+\chi_{T}^{}(\Gamma_{3}-1) & > & 0\\
\nabla_{\mathrm{ad}}=\frac{\Gamma_{3}-1}{\Gamma_{1}} & > & 0
\end{eqnarray}

\end_inset

 we find the sign determining terms in inequalities
\begin_inset space ~
\end_inset

(
\begin_inset CommandInset ref
LatexCommand ref
reference "ZSSecSta"

\end_inset

) and (
\begin_inset CommandInset ref
LatexCommand ref
reference "ZSVibSta"

\end_inset

) respectively and obtain the following form of the criteria for dynamical,
 secular and vibrational 
\emph on
stability
\emph default
, respectively: 
\begin_inset Formula 
\begin{eqnarray}
3\Gamma_{1}-4=:S_{\mathrm{dyn}}> & 0\label{DynSta}\\
\frac{1-3/4\chi_{\rho}^{}}{\chi_{T}^{}}(\kappa_{T}^{}-4)+\kappa_{P}^{}+1=:S_{\mathrm{sec}}> & 0\label{SecSta}\\
4\nabla_{\mathrm{ad}}-(\nabla_{\mathrm{ad}}\kappa_{T}^{}+\kappa_{P}^{})-\frac{4}{3\Gamma_{1}}=:S_{\mathrm{vib}}> & 0\,.\label{VibSta}
\end{eqnarray}

\end_inset

 The constitutive relations are to be evaluated for the unperturbed thermodynami
c state (say 
\begin_inset Formula $(\rho_{0},T_{0})$
\end_inset

) of the zone.
 We see that the one-zone stability of the layer depends only on the constitutiv
e relations 
\begin_inset Formula $\Gamma_{1}$
\end_inset

, 
\begin_inset Formula $\nabla_{\mathrm{ad}}$
\end_inset

, 
\begin_inset Formula $\chi_{T}^{},\,\chi_{\rho}^{}$
\end_inset

, 
\begin_inset Formula $\kappa_{P}^{},\,\kappa_{T}^{}$
\end_inset

.
 These depend only on the unperturbed thermodynamical state of the layer.
 Therefore the above relations define the one-zone-stability equations of
 state 
\begin_inset Formula $S_{\mathrm{dyn}},\,S_{\mathrm{sec}}$
\end_inset

 and 
\begin_inset Formula $S_{\mathrm{vib}}$
\end_inset

.
 See Fig.
\begin_inset space ~
\end_inset


\begin_inset CommandInset ref
LatexCommand ref
reference "fig:VibStabEquation"

\end_inset

 for a picture of 
\begin_inset Formula $S_{\mathrm{vib}}$
\end_inset

.
 Regions of secular instability are listed in Table
\begin_inset space ~
\end_inset

1.
\end_layout

\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open

\begin_layout Plain Layout
\begin_inset Caption Standard

\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:VibStabEquation"

\end_inset

Vibrational stability equation of state 
\begin_inset Formula $S_{\mathrm{vib}}(\lg e,\lg\rho)$
\end_inset

.
 
\begin_inset Formula $>0$
\end_inset

 means vibrational stability 
\end_layout

\end_inset


\end_layout

\end_inset


\end_layout

\begin_layout Section
Conclusions
\end_layout

\begin_layout Enumerate
The conditions for the stability of static, radiative layers in gas spheres,
 as described by Baker's (
\begin_inset CommandInset citation
LatexCommand cite
key "Abernethy2003"

\end_inset

) standard one-zone model, can be expressed as stability equations of state.
 These stability equations of state depend only on the local thermodynamic
 state of the layer.
 
\end_layout

\begin_layout Enumerate
If the constitutive relations – equations of state and Rosseland mean opacities
 – are specified, the stability equations of state can be evaluated without
 specifying properties of the layer.
 
\end_layout

\begin_layout Enumerate
For solar composition gas the 
\begin_inset Formula $\kappa$
\end_inset

-mechanism is working in the regions of the ice and dust features in the
 opacities, the 
\begin_inset Formula $\mathrm{H}_{2}$
\end_inset

 dissociation and the combined H, first He ionization zone, as indicated
 by vibrational instability.
 These regions of instability are much larger in extent and degree of instabilit
y than the second He ionization zone that drives the Cepheı̈d pulsations.
 
\end_layout

\begin_layout Acknowledgement
Part of this work was supported by the German 
\emph on
Deut\SpecialChar softhyphen
sche For\SpecialChar softhyphen
schungs\SpecialChar softhyphen
ge\SpecialChar softhyphen
mein\SpecialChar softhyphen
schaft, DFG
\emph default
 project number Ts
\begin_inset space ~
\end_inset

17/2–1.
\end_layout

\begin_layout Standard
\begin_inset CommandInset bibtex
LatexCommand bibtex
btprint "btPrintAll"
bibfiles "biblioExample"
options "aa"

\end_inset


\begin_inset Note Note
status open

\begin_layout Plain Layout

\series bold
Note:
\series default
 If you cannot see the bibliography in the output, assure that you have
 gievn the full path to the Bib\SpecialChar TeX
 style file 
\family sans
aa.bst
\family default
 that is part of the A&A \SpecialChar LaTeX
-package.
\end_layout

\end_inset


\end_layout

\end_body
\end_document