/usr/share/doc/mcl/html/mcxio.html is in mcl-doc 1:14-137-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (c) 2014 Stijn van Dongen -->
<head>
<meta name="keywords" content="manual">
<style type="text/css">
/* START aephea.base.css */
body
{ text-align: justify;
margin-left: 0%;
margin-right: 0%;
}
a:link { text-decoration: none; }
a:active { text-decoration: none; }
a:visited { text-decoration: none; }
a:link { color: #1111aa; }
a:active { color: #1111aa; }
a:visited { color: #111166; }
a.local:link { color: #11aa11; }
a.local:active { color: #11aa11; }
a.local:visited { color: #116611; }
a.intern:link { color: #1111aa; }
a.intern:active { color: #1111aa; }
a.intern:visited { color: #111166; }
a.extern:link { color: #aa1111; }
a.extern:active { color: #aa1111; }
a.extern:visited { color: #661111; }
a.quiet:link { color: black; }
a.quiet:active { color: black; }
a.quiet:visited { color: black; }
div.verbatim
{ font-family: monospace;
margin-top: 1em;
margin-bottom: 1em;
font-size: 10pt;
margin-left: 2em;
white-space: pre;
}
div.indent
{ margin-left: 8%;
margin-right: 0%;
}
.right { text-align: right; }
.left { text-align: left; }
.nowrap { white-space: nowrap; }
.item_leader
{ position: relative;
margin-left: 8%;
}
.item_compact { position: absolute; vertical-align: baseline; }
.item_cascade { position: relative; }
.item_leftalign { text-align: left; }
.item_rightalign
{ width: 2em;
text-align: right;
}
.item_compact .item_rightalign
{ position: absolute;
width: 52em;
right: -2em;
text-align: right;
}
.item_text
{ position: relative;
margin-left: 3em;
}
.smallcaps { font-size: smaller; text-transform: uppercase }
/* END aephea.base.css */
body { font-family: "Garamond", "Gill Sans", "Verdana", sans-serif; }
body
{ text-align: justify;
margin-left: 8%;
margin-right: 8%;
}
</style>
<title>The mcl matrix format specification</title>
</head>
<body>
<p style="text-align:right">
16 May 2014
<a class="local" href="mcxio.ps"><b>mcxio</b></a>
14-137
</p>
<a name="name"></a>
<h2>NAME</h2>
<p style="margin-bottom:0" class="asd_par">
mcxio — the format specifications for input and output in <b>mcl-edge</b></p>
<a name="description"></a>
<h2>DESCRIPTION</h2>
<p style="margin-bottom:0" class="asd_par">
The easiest format to create graphs from is a line-based format where each lines
represents an edge or arc. This format is known as the <i>Large Graph Layout</i>, as
<i>ncol</i> format (in <i>igraph</i>), and as <i>pairwise</i> format in BioLayout.
In <b>mcl-edge</b> it is additionally refered to
as <i>label</i> format or <i>abc</i> format.
In this format each line has two or three fields. The first two fields
define the source and destination node of an arc. Such an arc may be
interpreted as a bidirectional edge, depending on the program reading the format.
The third field is optional. If present, it should supply a numerical value
that will be used as edge weights. By default, edge weights are set to one.
</p>
<p style="margin-bottom:0" class="asd_par">
Several programs in <b>mcl-edge</b> are able to directly use label format.
For more elaborate workflows it may be useful to utilise one of the
native <b>mcl-edge</b> formats that are optimised for interoperability and/or speed.
The remainder of this manual page documents the format specifications in
<b>mcl-edge</b>. For hands-on examples of workflows involving both label and other
formats it may be useful to have a look at <a class="local sibling" href="clmprotocols.html">clmprotocols</a>.
</p>
<p style="margin-bottom:0" class="asd_par">
The primary objects in the MCL-edge network analysis suite are graphs and
clusterings. Graphs can be directed and may have loops. Both graphs and
clusterings are represented in a general unified format. This format
specifies two domains (a <i>source domain</i> and a <i>destination domain</i>),
along with lists of arcs linking pairs of elements from the two domains.
For graphs the two domains are simply both equal to the graph node domain, whereas for
clusterings one domain is the graph node domain and the other corresponds to
the enumeration of clusters. Undirected graphs are a special instance of
a directed graph, where an edge from the undirected graph is represented
by two arcs of identical weight, one for each possible direction.
</p>
<p style="margin-bottom:0" class="asd_par">
The general unified format alluded to above is in fact
a simple rectangular sparse matrix representation.
Sparse means that zero entries in the matrix are not stored.
A zero entry corresponds to an ordered node pair in the graph
for which no arc exists from the first to the second node.
An undirected graph corresponds with a symmetric matrix.
</p>
<p style="margin-bottom:0" class="asd_par">
The MCL suite uses a slight generalisation of the matrix concept, in
that the row and column indices (that is, domains) can be arbitrary
lists of nonnegative integers. Usually, but not necessarily, a domain
of size <tt>N</tt> will use the common representation of the list
of integers starting at <tt>0</tt> and ending at <tt>N-1</tt>.
The <i>source domain</i> is always associated with the columns of
a matrix, and the <i>destination domain</i> is always associated
with the rows of a matrix. The matrix format, introduced below,
first specifies the two domains. It then represents the nonzero matrix
entries (corresponding with graph arc weights) in a column-wise
fashion, as a list of lists. For each node from the source domain,
it presents the list of all its neighbours in the destination domain
along with the corresponding weights.
This document describes
</p>
<div class=" itemize " style="margin-top:1em; font-size:100%">
<div class=" item_cascade"><div class=" item_leftalign nowrap " ><i>native matrix format</i></div></div>
<div class=" item_text " style="margin-left:2em">
<p style="margin-top:0em; margin-bottom:0em">
The format that can be read in by any mcl application
expecting a matrix argument. The native format closely resembles
the layout of matrices as residing in computer memory. There are
two distinct encodings, respectively <i>interchange</i> and <i>binary</i>.
Their relative merits are described further below.
</p>
</div>
<div style="margin-top:0em"> </div><div class=" item_cascade"><div class=" item_leftalign nowrap " ><i>concatenated native matrix format</i></div></div>
<div class=" item_text " style="margin-left:2em">
<p style="margin-top:0em; margin-bottom:0em">
This always pertains to matrices in native format concatenated in a single
file, refered to as a <i>cat file</i>. It is used for example to encode
hierarchical clusterings as generated by <b>mclcm</b>. A cat file either
consists of matrices in interchange format or of matrices in binary format.</p>
</div>
<div style="margin-top:0em"> </div><div class=" item_cascade"><div class=" item_leftalign nowrap " ><i>raw intermediate format</i></div></div>
<div class=" item_text " style="margin-left:2em">
<p style="margin-top:0em; margin-bottom:0em">
This is read by <a class="local sibling" href="mcxassemble.html">mcxassemble</a>.</p>
</div>
<div style="margin-top:0em"> </div><div class=" item_cascade"><div class=" item_leftalign nowrap " ><i>tab format</i></div></div>
<div class=" item_text " style="margin-left:2em">
<p style="margin-top:0em; margin-bottom:0em">
Used by applications such as <a class="local sibling" href="mcl.html">mcl</a> and <a class="local sibling" href="mcxdump.html">mcxdump</a> to
convert between meaningful labels describing the input data and the
numerical identifiers used internally.</p>
</div>
<div style="margin-top:0em"> </div><div class=" item_cascade"><div class=" item_leftalign nowrap " ><i>label format</i></div></div>
<div class=" item_text " style="margin-left:2em">
<p style="margin-top:0em; margin-bottom:0em">
The format used when streaming labels directly into
<a class="local sibling" href="mcl.html">mcl</a>, various modes of <a class="local sibling" href="mcx.html">mcx</a>, or <a class="local sibling" href="mcxload.html">mcxload</a>.</p>
</div>
<div style="margin-top:0em"> </div><div class=" item_cascade"><div class=" item_leftalign nowrap " ><i>transformation syntax</i></div></div>
<div class=" item_text " style="margin-left:2em">
<p style="margin-top:0em; margin-bottom:0em">
The syntax accepted by <a class="local sibling" href="mcl.html">mcl</a>, <a class="local sibling" href="mcxalter.html">mcxalter</a> and
many other programs to transform graphs and matrices.</p>
</div>
</div>
<p style="margin-bottom:0" class="asd_par">
The interchange format is a portable format that can be transmitted
across computers and over networks and will work with any version
of mcl or its sibling programs. It is documented (here) and very stable.
Applications can easily create matrices in this format.
The drawback of interchange format is that for very large graphs
matrix encodings grow very big and are slow to read.</p>
<p style="margin-bottom:0" class="asd_par">
The binary format is <i>not</i> garantueed to be portable across
machines or different versions of mcl or differently compiled
versions of mcl. Its distinct advantage is that for very large
graphs the speed advantage over interchange format is dramatic.</p>
<p style="margin-bottom:0" class="asd_par">
Conversion between the two formats is easily achieved with
<b>mcxconvert</b>. Both <a class="local sibling" href="mcl.html">mcl</a> and <a class="local sibling" href="mcxload.html">mcxload</a>
can save a matrix in either format after constructing it from
label format.</p>
<p style="margin-bottom:0" class="asd_par">
The concatenated format is generated e.g. by <a class="local sibling" href="mclcm.html">mclcm</a> and can
be transformed by <a class="local sibling" href="mcxdump.html">mcxdump</a> using the <b>-imx-cat</b>
option. In cat format matrices are simply concatenated,
so it is easily generated from the command line if needed.
For native binary format it is imperative that no additional
bytes are inserted inbetween the matrix encodings. For native
interchange format the only requirement is that the last
matrix is followed by nothing but white space.</p>
<p style="margin-bottom:0" class="asd_par">
A remark on the sloppy naming conventions used for <b>mcl</b> and its sibling
utilities may be in order here. The prefix <b>mcx</b> is used for generic
matrix functionality, the prefix <b>clm</b> is used for generic cluster
functionaliy. The <i>utility</i> <b>mcx</b> is a general purpose interpreter for
manipulating matrices (and grahps, sets, and clusterings). The set of all
<b>mcl</b> siblings (cf. <a class="local sibling" href="mclfamily.html">mclfamily</a>) is loosely refered to as the mcl
family, which makes use of the mcl libraries (rather than the mcx
libraries). The full truth is even more horrible, as the mcl/mcx prefix
conventions used in the C source code follow still other rules.</p>
<p style="margin-bottom:0" class="asd_par">
In this document, 'MCL' means 'the mcl setting' or 'the mcl family'. An MCL
program is one of the programs in the mcl family. The remainder of this
document contains the following sections.</p>
<div class=" itemize " style="margin-top:1em; font-size:100%">
<div class=" item_compact"><div class=" item_rightalign nowrap " style="right:-3em">3.</div></div>
<div class=" item_text " style="margin-left:4em">
<a class="intern" href="#internal">Internal representation of matrices in MCL</a>
</div>
<div class=" item_compact"><div class=" item_rightalign nowrap " style="right:-3em">4.</div></div>
<div class=" item_text " style="margin-left:4em">
<a class="intern" href="#mspec">Specifying matrices</a>
</div>
<div class=" item_compact"><div class=" item_rightalign nowrap " style="right:-3em">5.</div></div>
<div class=" item_text " style="margin-left:4em">
<a class="intern" href="#gspec">Specifying graphs</a>
</div>
<div class=" item_compact"><div class=" item_rightalign nowrap " style="right:-3em">6.</div></div>
<div class=" item_text " style="margin-left:4em">
<a class="intern" href="#raw">Raw format</a>
</div>
<div class=" item_compact"><div class=" item_rightalign nowrap " style="right:-3em">7.</div></div>
<div class=" item_text " style="margin-left:4em">
<a class="intern" href="#tab">Tab format / label information</a>
</div>
<div class=" item_compact"><div class=" item_rightalign nowrap " style="right:-3em">8.</div></div>
<div class=" item_text " style="margin-left:4em">
<a class="intern" href="#label">Label format</a>
</div>
<div class=" item_compact"><div class=" item_rightalign nowrap " style="right:-3em">9.</div></div>
<div class=" item_text " style="margin-left:4em">
<a class="intern" href="#trans">Transformation syntax</a>
</div>
<div class=" item_compact"><div class=" item_rightalign nowrap " style="right:-3em">10.</div></div>
<div class=" item_text " style="margin-left:4em">
<a class="intern" href="#seealso">SEE ALSO</a>
</div>
<div class=" item_compact"><div class=" item_rightalign nowrap " style="right:-3em">11.</div></div>
<div class=" item_text " style="margin-left:4em">
<a class="intern" href="#author">AUTHOR</a>
</div>
</div>
<a name="internal"></a>
<h2>Internal representation of matrices in MCL</h2>
<p style="margin-bottom:0" class="asd_par">
There are several aspects to the way in which MCL represents matrices.
Internally, indices never act as an ofset in an array, and neither do they
participate in ofset computations. This means that they purely act as
identifiers. The upshot is that matrices can be handled in which the index
domains are <i>non-sequential</i> (more below). Thus one can work with
different graphs and matrices all using subsets of the same set of
indices/identifiers. This aids in combining data sets in different ways and
easily comparing the respective results when experimenting. Secondly, only
<i>nonzero values</i> (and their corresponding indices) are stored. Thirdly,
MCL stores a matrix as a listing of columns. Iterating over a column is
trivial; iterating over a row requires a costly transposition computation.
The last two points should matter little to the user of MCL programs.</p>
<p style="margin-bottom:0" class="asd_par">
In textbook expositions and in many matrix manipulation implementations,
matrices are represented with sequentially indexed rows and columns, with
the indices usually starting at either zero or one. In the MCL setting, the
requirement of sequentiality is dropped, and it follows naturally that no
requirement is posed on the first index. The only requirement MCL poses on
the indices is that they be nonnegative, and can be represented by the
integer type used by MCL. On many machines, the largest allowable integer
will be 2147483647.</p>
<p style="margin-bottom:0" class="asd_par">
MCL associates two domains with a matrix <tt>M</tt>, the row domain and column
domain. The matrix <tt>M</tt> can only have entries <tt>M[i,j]</tt> where <tt>i</tt> is
in the row domain and <tt>j</tt> is in the column domain. This is vital when
specifying a matrix: it is illegal to specify an entry <tt>M[i,j]</tt> violating
this condition. However, it is not necessary to specify <i>all</i>
entries <tt>M[i,j]</tt> for all possible combinations of <tt>i</tt> and <tt>j</tt>. One
needs only specify those entries for which the value is nonzero, and only
nonzero values will be stored internally. In the MCL matrix format, the
matrix domains must be specified explicitly if they are not canonical (more
below).</p>
<p style="margin-bottom:0" class="asd_par">
<b>Strictly as an aside</b>, the domains primarily exist to ensure data
integrity. When combining matrices with addition or multiplication (e.g.
using the <b>mcx</b> utility), MCL will happily combine matrices for which the
domains do not match, although it will usually issue a warning.
Conceptually, matrices auto-expand to the dimensions required for the
operation. Alternatively, a matrix can be viewed as an infinite quadrant,
with the domains delimiting the parts in which nonzero entries may exist.
In the future, facilities could be added to MCL (c.q. <b>mcx</b>) to allow for
placing strict domain requirements on matrices when submitted to binary
operations such as addition and multiplication.</p>
<a name="mspec"></a>
<h2>Specifying matrices</h2>
<p style="margin-bottom:0" class="asd_par">
From here on, all statements about matrices and graphs are really statements
about matrices and graphs <i>in the MCL setting</i>. The <i>specification</i>
of a matrix quite closely matches the internal representation.</p>
<p style="margin-bottom:0" class="asd_par">
A matrix M has two domains: the column domain and the row domain. Both
simply take the form of a set (represented as an ordered list) of indices. A
<i>canonical domain</i> is a domain of some size <tt>K</tt> where the indices are
simply the first <tt>K</tt> nonnegative integers <tt>0,1..,K-1</tt>. The domains
dictate which nonzero entries are allowed to occur in a matrix; only entries
M[i,j] are allowed where i is in the row domain and j is in the column
domain.</p>
<p style="margin-bottom:0" class="asd_par">
The matrix M is specified in three parts, for which the second is optional.
The parts are:</p>
<div class=" itemize " style="margin-top:1em; font-size:100%">
<div class=" item_cascade"><div class=" item_leftalign nowrap " >Header specification</div></div>
<div class=" item_text " style="margin-left:2em">
<p style="margin-top:0em; margin-bottom:0em">
This specifies the dimensions K and L of the matrix, where K is the
size of the row domain, and L is the size of the column domain.
It looks as follows:</p>
<div class="verbatim">(mclheader
mcltype matrix
dimensions 9x14
)</div>
<p style="margin-top:0em; margin-bottom:0em">
This dictates that a matrix will be specified for which the row
domain has dimension 9 and the column domain has dimension 14.
</p>
</div>
<div style="margin-top:0em"> </div><div class=" item_cascade"><div class=" item_leftalign nowrap " >Domain specification</div></div>
<div class=" item_text " style="margin-left:2em">
<p style="margin-top:0em; margin-bottom:0em">
The domain specification can have various forms: if nothing is specified,
the matrix will have canonical domains and a canonical representation,
similar to the representation encountered in textbooks. Alternatively, the
row and column domains can each be specified separately, and it is also
possible to specify only one of them; the other will simply be a canonical
domain again. Finally, it is possible to declare the two domains identical
and specify them simultaneously. It is perfectly legal in each case to
explicitly specify a canonical domain. It is <i>required</i> in each case
that the number of indices listed in a domain corresponds with the dimension
given in the header.</p>
<p style="margin-bottom:0" class="asd_par">
An example where both a row domain and a column domain are specified:</p>
<div class="verbatim">(mclrows
100 200 300 400 500 600 700 800 900 $
)
(mclcols
30 32 34 36 38 40 42 44 46 48 50 52 56 58 $
)</div>
<p style="margin-top:0em; margin-bottom:0em">
This example combines with the header given above, as the dimensions fit.
Had the row domain specification been omitted, the row domain would
automatically be set to the integers <tt>0,1,..8</tt>. Had the column
specification been omitted, it would be set to <tt>0,1,..13</tt>.</p>
<p style="margin-bottom:0" class="asd_par">
Suppose now that the header did specify the dimensions 10x10.
Because the dimensions are identical, this raises the possibility
that the domains be identical.
A valid way to specify the row domain and column domain in one go is this.</p>
<div class="verbatim">(mcldoms
11 22 33 44 55 66 77 88 99 100 $
)</div>
</div>
<div style="margin-top:0em"> </div><div class=" item_cascade"><div class=" item_leftalign nowrap " >Matrix specification</div></div>
<div class=" item_text " style="margin-left:2em">
<p style="margin-top:0em; margin-bottom:0em">
The matrix specification starts with the sequence</p>
<div class="verbatim">(mclmatrix
begin</div>
<p style="margin-top:0em; margin-bottom:0em">
The 'begin' keyword in the '(mclmatrix' part is followed by a list of
listings, where the primary list ranges over all column indices in M (i.e.
indices in the column domain), and where each secondary lists encodes all
positive entries in the corresponding column. A secondary list (or matrix
column) starts with the index c of the column, and then contains a listing
of all row entries in c (these are matrix entries M[r,c] for varying r). The
entry M[r,c] is specified either as 'r' or as 'r:f', where f is a float. In
the first case, the entry M[r,c] defaults to 1.0, in the second case, it is
set to f. The secondary list is closed with the `$' character. A full
fledged examples thus looks as follows:</p>
<div class="verbatim">(mclheader
mcltype matrix
dimensions 12x3
)
(mclrows
11 22 33 44 55 66 77 88 99 123 456 2147483647 $
)
(mclcols
0 1 2 $
)
(mclmatrix
begin
0 44 88 99 456 2147483647 $
1 11 66 77 123 $
2 22 33 55 $
)</div>
<p style="margin-top:0em; margin-bottom:0em">
Note that the column domain is canonical; its specifiation could have been
omitted. In this example, no values were specified. See below for more.</p>
</div>
</div>
<a name="gspec"></a>
<h2>Specifying graphs</h2>
<p style="margin-top:0em; margin-bottom:0em">
A graph is simply a matrix where the row domain is the same as the column
domain. Graphs should have positive entries only. Example:</p>
<div class="verbatim">(mclheader
mcltype matrix
dimensions 12x12
)
(mcldoms
11 22 33 44 55 66 77 88 99 123 456 2147483647 $
)
(mclmatrix
begin
11 22:2 66:3.4 77:3 123:8 $
22 11:2 33:3.8 55:8.1 $
33 22:3.8 44:7 55:6.2 $
44 33:7 88:5.7 99:7.0 456:3 $
55 22:8.1 33:6.2 77:2.9 88:3.0 $
66 11:3.4 123:5.1 $
77 11:3 55:2.9 123:1.5 $
88 44:5.7 55:3.0 99:3.0 456:4.2 $
99 44:7.0 88:3.0 456:1.8 2147483647:3.9 $
123 11:8 66:5.1 77:1.5 $
456 44:3 88:4.2 99:1.8 2147483647:6.3 $
2147483647 99:3.9 456:6.3 $
)</div>
<p style="margin-top:0em; margin-bottom:0em">
Incidentally, clustering this graph with mcl, using default parameters,
yields a cluster that is represented by the 12x3 matrix shown earlier.</p>
<p style="margin-bottom:0" class="asd_par">
The following example shows the same graph, now represented on a
canonical domain, and with all values implicitly set to 1.0:</p>
<div class="verbatim">(mclheader
mcltype matrix
dimensions 12x12
)
(mclmatrix
begin
0 1 5 6 9 $
1 0 2 4 $
2 1 3 4 $
3 2 7 8 10 $
4 1 2 6 7 $
5 0 9 $
6 0 4 9 $
7 3 4 8 10 $
8 3 7 10 11 $
9 0 5 6 $
10 3 7 8 11 $
11 8 10 $
)</div>
<p style="margin-bottom:0"><b>Additional notes</b><br>
There are few restrictions on the format that one might actually expect.
Vectors and entries may occur in any order and need not be sorted.
Repeated entries and repeated vectors are allowed but are always
discarded while an error message is emitted.</p>
<p style="margin-bottom:0" class="asd_par">
If you want <i>functionally interesting behaviour</i> in combining
repeated vectors and repeated entries, have a look at the next section
and at <a class="local sibling" href="mcxassemble.html">mcxassemble</a>.</p>
<p style="margin-bottom:0" class="asd_par">
Within the vector listing, the '#' is a token that introduces
a comment until the end of line.</p>
<a name="raw"></a>
<h2>Raw format</h2>
<p style="margin-bottom:0" class="asd_par">
A file in <i>raw format</i> is simply a listing of vectors without any
sectioning structure. No header specification, no domain specification, and
no matrix introduction syntax is used - these are supplied to the processing
application by other means. The end-of-vector token '$' must still be used,
and the comment token '#' is still valid. <a class="local sibling" href="mcxassemble.html">mcxassemble</a>
imports a file in raw
format, creates a native matrix from the data therein, and writes the
matrix to (a different) file. It allows customizable behaviour in how to
combine repeated entries and repeated vectors. This is typically used in the
following procedure. A) Do a one-pass-parse on some external cooccurrence
file/format, generate raw data during the parse and write it to file
(without needing to build a huge data structure in memory). B) mcxassemble
takes the raw data and assembles it according to instruction into a native
mcl matrix.</p>
<a name="tab"></a>
<h2>Tab format / label information</h2>
<p style="margin-top:0em; margin-bottom:0em">
Several mcl programs accept options such as <b>-tab</b>, <b>-tabc</b>,
<b>-tabr</b>, <b>-use-tab</b>, <b>-strict-tab</b>,
and <b>-extend-tab</b>.
The argument to these options is invariably the name of
a so-called <i>tab file</i>.
Tab files are used to convert between labels (describing entities
in the data) and indices as used in the mcl matrix format.
In a tab file each line starts with a unique number which presumably
corresponds to an index used in a matrix file.
The rest of the line contains a
descriptive string associated with the number. It is required
that each string is unique, although not all mcl programs enforce
this at the time of writing.
The string may contain spaces.
Lines starting with
<tt>#</tt> are considered comment and are disregarded.
</p>
<p style="margin-bottom:0"><b>Tab domain</b><br>The ordered set of indices found in the tab file
is called the <i>tab domain</i>.</p>
<p style="margin-bottom:0" class="asd_par">
Tab files are almost always employed in conjunction with an mcl matrix file.
<a class="local sibling" href="mcxdump.html">mcxdump</a> and <a class="local sibling" href="clmformat.html">clmformat</a> require by
default that the tab domain coincides with the matrix domain (either row or
column or both) to which they will be applied. This can be relaxed for
either by supplying the <b>--lazy-tab</b> option.</p>
<p style="margin-bottom:0" class="asd_par">
mcl provides explicit modes for dealing with tab structures by means of
the <b>-extend-tab</b>, <b>-restrict-tab</b> and
<b>-strict-tab</b> options. Refer to the <a class="local sibling" href="mcl.html">mcl</a>
documentation.</p>
<a name="label"></a>
<h2>Label format</h2>
<p style="margin-top:0em; margin-bottom:0em">
Label format is a line based input where two nodes and an optional value are
specified on each line. The nodes should be specified by labels. If the
labels contain spaces they should be separated by tabs (and the value if
present should be separated from the second label by a tab as well). The
parse code will assume tab-separated labels if it sees a tab character in
the input, otherwise it will split the input on any kind of whitespace.
Any line where the first non-whitespace character is the octothorp (#) is
ignored. The following is an example of label format.</p>
<div class="verbatim">---8<------8<------8<------8<------8<---
# the cat and the hat example
cat hat 0.2
hat bat 0.16
bat cat 1.0
bat bit 0.125
bit fit 0.25
fit hit 0.5
hit bit 0.16
--->8------>8------>8------>8------>8---</div>
<p style="margin-top:0em; margin-bottom:0em">
<a class="local sibling" href="mcl.html">mcl</a> can read in label format and cluster it when it is
given the <b>--abc</b> option. It can optionally save
the input graph in native format and save the label information
in a tab file with the <b>-save-graph</b> and <b>-save-tab</b>
options.</p>
<p style="margin-bottom:0" class="asd_par">
Refer to the <a class="local sibling" href="mcl.html#started">MCL getting started</a> and
<a class="local sibling" href="mcl.html#examples">MCL manual examples</a> sections
for more information on how MCL deals with label format.</p>
<p style="margin-bottom:0" class="asd_par">
<a class="local sibling" href="mcxload.html">mcxload</a> is a general purpose program for reading
in label data and other stream formats. It
encodes them in native mcl format and tab files.
It allows intermediate transformations on the values.</p>
<a name="trans"></a>
<h2>Transformation syntax</h2>
<p style="margin-top:0em; margin-bottom:0em">
<a class="local sibling" href="mcl.html">mcl</a>, <a class="local sibling" href="mcxload.html">mcxload</a>, <a class="local sibling" href="mcxsubs.html">mcxsubs</a>, <a class="local sibling" href="mcxassemble.html">mcxassemble</a>
and <a class="local sibling" href="mcxalter.html">mcxalter</a>
all accept the same transformation language in their
respective <b>tf</b>-type options and mcxsub's <b>val</b>
specification.</p>
<p style="margin-bottom:0" class="asd_par">
A statement in this language is simply a comma-separated
list of functions accepting a single numerical value.
The syntax of a function invocation in general is
<b>func</b>(<i>arg</i>).
The functions <b>exp</b>, <b>log</b>, <b>neglog</b> can
also be given an empty parameter list, indicating that
<i>e</i> is taken as the exponent base. In this case,
the invocation looks like <b>func</b>().
Functions with names that start with <tt>#</tt> operate
on graphs in their entirety. For example, <tt>#knn(50)</tt>
indicates the k-Nearest Neighbour transformation for
<tt>k=50</tt>.
All other names encode functions that operate
directly on edges.
Functions with names that start with <tt>#arc</tt> operate
on directed graphs and yield directed graphs.
Most of the other <tt>#</tt> functions either expect
an undirected graph (such as <tt>#knn()</tt>) or yield
an undirected graph (such as <tt>#add()</tt> and <tt>#max()</tt>.
The following are supported.
</p>
<div class=" itemize " style="margin-top:1em; font-size:100%">
<div class=" item_compact"><div class=" item_leftalign nowrap " >lt</div></div>
<div class=" item_text " style="margin-left:12em">
Filter out values greater than or equal to arg.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >lq</div></div>
<div class=" item_text " style="margin-left:12em">
Filter out values greater than arg.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >gq</div></div>
<div class=" item_text " style="margin-left:12em">
Filter out values less than arg.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >gt</div></div>
<div class=" item_text " style="margin-left:12em">
Filter out values less than or equal to arg.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >ceil</div></div>
<div class=" item_text " style="margin-left:12em">
Set everything higher than arg to arg.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >floor</div></div>
<div class=" item_text " style="margin-left:12em">
Set everything lower than arg to arg.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >mul</div></div>
<div class=" item_text " style="margin-left:12em">
Multiply values by arg.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >add</div></div>
<div class=" item_text " style="margin-left:12em">
Add arg to values.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >power</div></div>
<div class=" item_text " style="margin-left:12em">
Raise values to power arg.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >exp</div></div>
<div class=" item_text " style="margin-left:12em">
Raise arg (<i>e</i> if omitted) to value.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >log</div></div>
<div class=" item_text " style="margin-left:12em">
Take log in base arg (<i>e</i> if omitted).
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >neglog</div></div>
<div class=" item_text " style="margin-left:12em">
Take minus log in base arg (<i>e</i> if omitted).
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >rand</div></div>
<div class=" item_text " style="margin-left:12em">
Keep arc with probablity arg.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >scale</div></div>
<div class=" item_text " style="margin-left:12em">
Divide values by arg.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >abs</div></div>
<div class=" item_text " style="margin-left:12em">
Replace value by its absolute value.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >acos</div></div>
<div class=" item_text " style="margin-left:12em">
Take acos of value.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#knn</div></div>
<div class=" item_text " style="margin-left:12em">
k-Nearest Neighbour reduction with <tt>k=arg</tt> (intersect lists).
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#knnj</div></div>
<div class=" item_text " style="margin-left:12em">
As <tt>#knn</tt> above, but join selected neighbour lists.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#ceilnb</div></div>
<div class=" item_text " style="margin-left:12em">
Cap number of neighbours at arg at most.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#ils</div></div>
<div class=" item_text " style="margin-left:12em">
Inverted log-weight similarity (no argument).
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#mcl</div></div>
<div class=" item_text " style="margin-left:12em">
Cluster with inflation=arg, yields induced graph.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#add</div></div>
<div class=" item_text " style="margin-left:12em">
Convert two arcs to one edge using addition.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#min</div></div>
<div class=" item_text " style="margin-left:12em">
Convert two arcs to one edge using minimum.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#max</div></div>
<div class=" item_text " style="margin-left:12em">
Convert two arcs to one edge using maximum.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#mul</div></div>
<div class=" item_text " style="margin-left:12em">
Convert two arcs to one edge using multiplication.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#rev</div></div>
<div class=" item_text " style="margin-left:12em">
Encode graph in reverse direction.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#tp</div></div>
<div class=" item_text " style="margin-left:12em">
Same as above in matrix speak (<i>t</i>rans<i>p</i>ose).
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#selfrm</div></div>
<div class=" item_text " style="margin-left:12em">
Remove loops.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#selfmax</div></div>
<div class=" item_text " style="margin-left:12em">
Set loop value to maximum value.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#tug</div></div>
<div class=" item_text " style="margin-left:12em">
Perturb edge weights with factor arg.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#shrug</div></div>
<div class=" item_text " style="margin-left:12em">
Randomly perturb edge weights with factor arg.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#step</div></div>
<div class=" item_text " style="margin-left:12em">
Use the k-step relation, where <tt>k=arg</tt>.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#thread</div></div>
<div class=" item_text " style="margin-left:12em">
Set thread pool size to arg.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#arcmax</div></div>
<div class=" item_text " style="margin-left:12em">
Only keep largest arc between two nodes.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#arcsub</div></div>
<div class=" item_text " style="margin-left:12em">
Replace G by G - G^T.
</div>
<div class=" item_compact"><div class=" item_leftalign nowrap " >#symmcl</div></div>
<div class=" item_text " style="margin-left:12em">
As <tt>#mcl</tt>, use symmetrised graph for clustering.
</div>
</div>
<p style="margin-bottom:0"><b>NOTE</b><br>
<a class="local sibling" href="mcl.html">mcl</a> accepts <b>--abc-neg-log</b> and <b>--abc-neg-log10</b>
to specify log transformations. Similarly, <a class="local sibling" href="mcxload.html">mcxload</a> accepts
<b>--stream-log</b>, <b>--stream-neg-log</b>, and
<b>--stream-neg-log10</b>. The reason is that probabilities are sometimes
encoded below the precision dictated by the IEEE (32 bit) float
specification. This poses a problem as the mcl applications encode values
by default as floats, and the transformation specifications are always
applied to the mcl encoding. The options just mentioned are applied after a
value has been read from an input stream and <i>before</i> it is converted to
the native encoding.
</p>
<a name="seealso"></a>
<h2>SEE ALSO</h2>
<p style="margin-top:0em; margin-bottom:0em">
<a class="local sibling" href="mcxassemble.html">mcxassemble</a>,
and <a class="local sibling" href="mclfamily.html">mclfamily</a> for an overview of all the documentation
and the utilities in the mcl family.</p>
<a name="author"></a>
<h2>AUTHOR</h2>
<p style="margin-top:0em; margin-bottom:0em">
Stijn van Dongen.</p>
</body>
</html>
|