This file is indexed.

/usr/share/minlog/src/unicode.scm is in minlog 4.0.99.20100221-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
; $Id: unicode.scm 2156 2008-01-25 13:25:12Z schimans $

; MINLOG: unicode.scm

; (load "~/minlog/init.scm")


; (add-token "⊥" 'const (make-term-in-const-form false-const))




;; BOOLEAN SYMBOLS

; most of code originates from src/boole.scm


; CONJUNCTION ∧


(add-token
 "∧" 'and-op
 (lambda (x y)
   (mk-term-in-app-form
    (make-term-in-const-form (pconst-name-to-pconst "AndConst")) x y)))

(add-display
 (py "boole")
 (lambda (x)
   (if (term-in-app-form? x)
       (let ((op (term-in-app-form-to-final-op x))
             (args (term-in-app-form-to-args x)))
         (if (and (term-in-const-form? op)
                  (string=? "AndConst"
                            (const-to-name (term-in-const-form-to-const op)))
                  (= 2 (length args)))
             (list 'and-op "∧"
                   (term-to-token-tree (car args))
                   (term-to-token-tree (cadr args)))
             #f))
       #f)))



; IMPLICATION →

(add-token
 "→" 'imp-op
 (lambda (x y)
   (mk-term-in-app-form
    (make-term-in-const-form (pconst-name-to-pconst "ImpConst")) x y)))

(add-display
 (py "boole")
 (lambda (x)
   (if (term-in-app-form? x)
       (let ((op (term-in-app-form-to-final-op x))
	     (args (term-in-app-form-to-args x)))
	 (if (and (term-in-const-form? op)
		  (string=? "ImpConst"
			    (const-to-name (term-in-const-form-to-const op)))
		  (= 2 (length args)))
	     (list 'imp-op "→"
		   (term-to-token-tree (car args))
		   (term-to-token-tree (cadr args)))
	     #f))
       #f)))



; DISJUNCTION ∨

(add-token
 "∨" 'or-op
 (lambda (x y)
   (mk-term-in-app-form
    (make-term-in-const-form (pconst-name-to-pconst "OrConst")) x y)))

(add-display
 (py "boole")
 (lambda (x)
   (if (term-in-app-form? x)
       (let ((op (term-in-app-form-to-final-op x))
	     (args (term-in-app-form-to-args x)))
	 (if (and (term-in-const-form? op)
		  (string=? "OrConst"
			    (const-to-name (term-in-const-form-to-const op)))
		  (= 2 (length args)))
	     (list 'or-op "∨"
		   (term-to-token-tree (car args))
		   (term-to-token-tree (cadr args)))
	     #f))
       #f)))


; NEGATION ¬

(add-token
 "¬" 'prefix-op
 (lambda (x)
   (mk-term-in-app-form
    (make-term-in-const-form (pconst-name-to-pconst "NegConst")) x)))

(add-display
 (py "boole")
 (lambda (x)
   (if (term-in-app-form? x)
       (let ((op (term-in-app-form-to-final-op x))
	     (args (term-in-app-form-to-args x)))
	 (if (and (term-in-const-form? op)
		  (string=? "NegConst"
			    (const-to-name (term-in-const-form-to-const op)))
		  (= 1 (length args)))
	     (list 'prefix-op "¬"
		   (term-to-token-tree (car args)))
	     #f))
       #f)))





;; FORMULAE


; LEIBNITZEQUALITY ≈

; I do not know how to define infix notation
; for predicate constants.

; (pp(pf "Equal boole1 boole2"))

(add-token
 "≈"
 'pred-infix
 (lambda (x y)
   ((string-and-arity-to-predconst-parse-function
	 "Equal" (make-arity (term-to-type x) (term-to-type y)))
	(- 1) x y)))
 
(add-predconst-display "Equal" 'pred-infix "≈")



; FUNCTION NEEDED FOR (pretty-print)

; It would be good to save the op-string in a seperated variable.
; Otherwise the whole code of (formula-token-tree-to-pp-tree )
; needs to be duplicated.

(define (formula-token-tree-to-pp-tree token-tree)
  (case (car token-tree)
    ((atom predicate) (make-pp-line (cadr token-tree)))
    ((imp-op and-op tensor-op)
     (let* ((op-string (cadr token-tree))
            (arg1 (formula-token-tree-to-pp-tree (caddr token-tree)))
            (arg2 (formula-token-tree-to-pp-tree (cadddr token-tree)))
            (prec-op (formula-token-type-to-precedence (car token-tree)))
            (prec-arg1
             (formula-token-type-to-precedence (car (caddr token-tree))))
            (prec-arg2
             (formula-token-type-to-precedence (car (cadddr token-tree))))
            (arg1-prefix (make-pp-line ""))
            (arg1-postfix (make-pp-line ""))
            (arg2-prefix (make-pp-line ""))
            (arg2-postfix (make-pp-line "")))
       (if (or (and (< prec-arg1 prec-op)
                    (not (quant-prime-token-tree-form? (caddr token-tree))))
               (and (= prec-arg1 prec-op)
                    (formula-right-assoc? (car (caddr token-tree)))))
           (begin (set! arg1-prefix (make-pp-line "("))
                  (set! arg1-postfix (make-pp-line ")")))
           (set! arg1-postfix
                 (make-pp-line
                  (separator-string (pp-tree-end arg1) op-string))))
       (if (or (and (< prec-arg2 prec-op)
                    (not (memq (car (cadddr token-tree))
                               '(and-op tensor-op all-op ex-op
                                        allnc-op exnc-op exca-op excl-op))))
               (and (= prec-arg2 prec-op)
                    (formula-left-assoc? (car (cadddr token-tree)))))
           (begin (set! arg2-prefix (make-pp-line "("))
                  (set! arg2-postfix (make-pp-line ")"))))
       (let* ((arg1-tree (list (+ (car arg1-prefix)
                                  (car arg1)
                                  (car arg1-postfix)) 
                               (car arg1-prefix)
                               'cat
                               (list arg1-prefix arg1 arg1-postfix)))
              (arg2-tree (list (+ (car arg2-prefix)
                                  (car arg2)
                                  (car arg2-postfix))
                               (car arg2-prefix)
                               'cat 
                               (list arg2-prefix arg2 arg2-postfix)))
              (op (if (string=? op-string "")
                      (make-pp-line (separator-string
                                     (pp-tree-end arg1-tree)
                                     (pp-tree-start arg2-tree)))
                      (make-pp-line op-string)))
              (arg1-op-tree (list (+ (car arg1-tree) (car op)) 0 'cat
                                  (list arg1-tree op))))
         (list (+ (car arg1-op-tree) (car arg2-tree)) 0 'newline
               (list arg1-op-tree arg2-tree)))))
    ((all-op ex-op allnc-op exnc-op exca-op excl-op)
     (let* ((op-string
             (case (car token-tree)
               ((all-op) "∀")
               ((ex-op) "∃")
               ((allnc-op) "∀nc")
               ((exnc-op) "∃nc")
               ((exca-op) "∃ca")
               ((excl-op) "∃cl")
               (else (myerror "formula-token-tree-to-pp-tree"
                              "unexpected op-string" op-string
                              "in token tree" token-tree))))
            (varstrings-and-kernel
             (formula-token-tree-to-varstrings-and-kernel token-tree))
            (varstrings (car varstrings-and-kernel))
            (kernel (cadr varstrings-and-kernel))
            (comma-string (do ((l (cdr varstrings) (cdr l))
                               (res (car varstrings)
                                    (string-append res "," (car l))))
                              ((null? l) res)))
            (sep-string (if (or (prime-form? kernel)
                                (quant-prime-token-tree-form? kernel))
                            " " "."))
            (prefix (string-append op-string comma-string sep-string))
            (prefix-width (string-length prefix))
            (postfix (formula-token-tree-to-pp-tree kernel))
            (postfix-width (car postfix)))
       (list (+ prefix-width postfix-width) 1 'newline 
             (list (make-pp-line prefix) postfix))))
    (else (begin (display "No pretty printing for: ") 
                 (display token-tree) 
                 (newline) 
                 (make-pp-line "")))))