/var/lib/mobyle/programs/BMGE.xml is in mobyle-programs 5.1.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 | <?xml version='1.0' encoding='UTF-8'?>
<!-- XML Authors: Corinne Maufrais, Nicolas Joly and Bertrand Neron, -->
<!-- 'Biological Software and Databases' Group, Institut Pasteur, Paris. -->
<!-- Distributed under LGPLv2 License. Please refer to the COPYING.LIB document. -->
<program>
<head>
<name>BMGE</name>
<version>1.0</version>
<doc>
<title>BMGE</title>
<description>
<text lang="en">Block Mapping and Gathering using Entropy</text>
</description>
<authors>Alexis Criscuolo and Simonetta Gribaldo</authors>
<reference>Criscuolo A, Gribaldo S (2010) BMGE (Block Mapping and Gathering with Entropy): selection of phylogenetic informative regions from multiple
sequence alignments. BMC Evolutionary Biology 10:210.
</reference>
<sourcelink>ftp://ftp.pasteur.fr/pub/gensoft/projects/BMGE/</sourcelink>
<doclink>http://bioweb2.pasteur.fr/docs/BMGE/BMGE_doc.pdf</doclink>
</doc>
<category>alignment:multiple:information</category>
<command>BMGE</command>
</head>
<parameters>
<paragraph>
<name>input</name>
<prompt lang="en">Input</prompt>
<argpos>2</argpos>
<parameters>
<parameter ismandatory="1" issimple="1">
<name>infile</name>
<prompt lang="en">Alignment (-i)</prompt>
<type>
<biotype>Protein</biotype>
<biotype>DNA</biotype>
<datatype>
<class>Alignment</class>
</datatype>
<dataFormat>FASTA</dataFormat>
<dataFormat>PHYLIPS</dataFormat>
</type>
<format>
<code proglang="perl">" -i $value"</code>
<code proglang="python">" -i "+str(value)</code>
</format>
<argpos>1</argpos>
<comment>
<text lang="en">BMGE uses FASTA or PHYLIP sequential format for input. These are
plain text files. There is no limit on the length of the
alignment. There is also no limit on the length of the label of
a sequence (i.e. its FASTA annotation line), although a too long
label (e.g. more than 100 letters) will be truncated if the
output format is PHYLIP sequential.</text>
</comment>
</parameter>
<parameter ismandatory="1" issimple="1">
<name>input_type</name>
<prompt lang="en">Type of sequence (-t)</prompt>
<type>
<datatype>
<class>Choice</class>
</datatype>
</type>
<vdef>
<value>null</value>
</vdef>
<vlist>
<velem undef="1">
<value>null</value>
<label>Set the input sequence coding</label>
</velem>
<velem>
<value>AA</value>
<label>Amino acid</label>
</velem>
<velem>
<value>DNA</value>
<label>Nucleotide</label>
</velem>
<velem>
<value>CODON</value>
<label>Codon</label>
</velem>
</vlist>
<format>
<code proglang="perl">(defined $value and $value ne $vdef) ? " -t $value" : ""</code>
<code proglang="python">("", " -t "+str(value))[value is not None and value!=vdef]</code>
</format>
<argpos>2</argpos>
<comment>
<text lang="en">Both standard single-letter amino acid and nucleotide alphabets
are used by BMGE. When using amino acid sequences, degenerated
character states B and Z are understood by BMGE; similarly,
degenerated nucleotide characters are also understood. The
character state X is understood to be any of the 4 or 20
character states when using as input nucleotide or amino acid
sequences, respectively. Dashes (i.e. '-') are understood as
gaps, whereas dots (i.e. '.'), as any other single letter that
are not inside standard alphabets, are considered as unknown
character state (i.e. '?'). Nucleotide sequences can be set as
codon ones. In this case, each successive nucleotide character
triplet is considered as one codon character.</text>
</comment>
</parameter>
</parameters>
</paragraph>
<paragraph>
<name>options</name>
<prompt lang="en">Control options</prompt>
<parameters>
<parameter>
<name>matrixaa</name>
<prompt lang="en">Similarity Matrices for amino acid and codon sequences (-m)</prompt>
<type>
<datatype>
<class>Choice</class>
</datatype>
</type>
<precond>
<code proglang="perl">$input_type eq 'AA' or $input_type eq 'CODON'</code>
<code proglang="python">input_type in ['AA', 'CODON']</code>
</precond>
<vdef>
<value>BLOSUM62</value>
</vdef>
<vlist>
<velem>
<value>BLOSUM62</value>
<label>BLOSUM62</label>
</velem>
<velem>
<value>ID</value>
<label>Identity</label>
</velem>
<velem>
<value>BLOSUM30</value>
<label>BLOSUM30</label>
</velem>
<velem>
<value>BLOSUM35</value>
<label>BLOSUM35</label>
</velem>
<velem>
<value>BLOSUM40</value>
<label>BLOSUM40</label>
</velem>
<velem>
<value>BLOSUM45</value>
<label>BLOSUM45</label>
</velem>
<velem>
<value>BLOSUM50</value>
<label>BLOSUM50</label>
</velem>
<velem>
<value>BLOSUM55</value>
<label>BLOSUM55</label>
</velem>
<velem>
<value>BLOSUM60</value>
<label>BLOSUM60</label>
</velem>
<velem>
<value>BLOSUM65</value>
<label>BLOSUM65</label>
</velem>
<velem>
<value>BLOSUM70</value>
<label>BLOSUM70</label>
</velem>
<velem>
<value>BLOSUM75</value>
<label>BLOSUM75</label>
</velem>
<velem>
<value>BLOSUM80</value>
<label>BLOSUM80</label>
</velem>
<velem>
<value>BLOSUM85</value>
<label>BLOSUM85</label>
</velem>
<velem>
<value>BLOSUM90</value>
<label>BLOSUM90</label>
</velem>
<velem>
<value>BLOSUM95</value>
<label>BLOSUM95</label>
</velem>
</vlist>
<format>
<code proglang="perl">(defined $value and $value ne $vdef) ? " -m $value" : ""</code>
<code proglang="python">("", " -m "+str(value))[value is not None and value!=vdef]</code>
</format>
<argpos>3</argpos>
<comment>
<text lang="en">For each character, BMGE computes a score mainly determined by the entropy induced by
the respective proportion of each residue. To estimate realistic
scores that take into account biologically relevant substitution processes, BMGE weights the
entropy estimation with substitution matrices.</text>
<text lang="en">These option can be used with the 15 estimated BLOSUM matrices. BMGE uses by
default the popular BLOSUM62 matrix. The character
trimming is progressively more stringent as the BLOSUM index
increases (e.g. BLOSUM95); reciprocally, the trimming is
progressively more relaxed as the BLOSUM index is lower (e.g.
BLOSUM30). In practice, it is recommended to use BLOSUM95 with
closely related sequences, and BLOSUM30 with distantly related
sequences.</text>
<text lang="en">If input sequences are set as codons, BMGE performs a conversion
into amino acid sequences (following the universal genetic code)
and uses BLOSUM matrices to estimate the entropy-like score for
each codon character. So, with option -t set as CODON, one can
modify the option -m only with BLOSUM matrices.
It is also possible to use the identity matrix with any sequence
types.</text>
</comment>
</parameter>
<parameter>
<name>matrixan</name>
<prompt lang="en">Similarity Matrices for nucleotide sequences (-m)</prompt>
<type>
<datatype>
<class>Choice</class>
</datatype>
</type>
<precond>
<code proglang="perl">$input_type eq 'DNA'</code>
<code proglang="python">input_type in ['DNA']</code>
</precond>
<vdef>
<value>DNAPAM100</value>
</vdef>
<vlist>
<velem>
<value>DNAPAM100</value>
<label>DNAPAM100</label>
</velem>
<velem>
<value>ID</value>
<label>Identity</label>
</velem>
<velem>
<value>DNAPAM1</value>
<label>DNAPAM1</label>
</velem>
<velem>
<value>DNAPAM5</value>
<label>DNAPAM5</label>
</velem>
<velem>
<value>DNAPAM10</value>
<label>DNAPAM10</label>
</velem>
<velem>
<value>DNAPAM20</value>
<label>DNAPAM20</label>
</velem>
<velem>
<value>DNAPAM30</value>
<label>DNAPAM30</label>
</velem>
<velem>
<value>DNAPAM40</value>
<label>DNAPAM40</label>
</velem>
<velem>
<value>DNAPAM50</value>
<label>DNAPAM50</label>
</velem>
<velem>
<value>DNAPAM60</value>
<label>DNAPAM60</label>
</velem>
<velem>
<value>DNAPAM70</value>
<label>DNAPAM70</label>
</velem>
<velem>
<value>DNAPAM80</value>
<label>DNAPAM80</label>
</velem>
<velem>
<value>DNAPAM90</value>
<label>DNAPAM90</label>
</velem>
<velem>
<value>DNAPAM110</value>
<label>DNAPAM110</label>
</velem>
<velem>
<value>DNAPAM120</value>
<label>DNAPAM120</label>
</velem>
<velem>
<value>DNAPAM130</value>
<label>DNAPAM130</label>
</velem>
<velem>
<value>DNAPAM140</value>
<label>DNAPAM140</label>
</velem>
<velem>
<value>DNAPAM150</value>
<label>DNAPAM150</label>
</velem>
<velem>
<value>DNAPAM160</value>
<label>DNAPAM160</label>
</velem>
<velem>
<value>DNAPAM170</value>
<label>DNAPAM170</label>
</velem>
<velem>
<value>DNAPAM180</value>
<label>DNAPAM180</label>
</velem>
<velem>
<value>DNAPAM190</value>
<label>DNAPAM190</label>
</velem>
<velem>
<value>DNAPAM200</value>
<label>DNAPAM200</label>
</velem>
<velem>
<value>DNAPAM210</value>
<label>DNAPAM210</label>
</velem>
<velem>
<value>DNAPAM220</value>
<label>DNAPAM220</label>
</velem>
<velem>
<value>DNAPAM230</value>
<label>DNAPAM230</label>
</velem>
<velem>
<value>DNAPAM240</value>
<label>DNAPAM240</label>
</velem>
<velem>
<value>DNAPAM250</value>
<label>DNAPAM250</label>
</velem>
<velem>
<value>DNAPAM260</value>
<label>DNAPAM260</label>
</velem>
<velem>
<value>DNAPAM270</value>
<label>DNAPAM270</label>
</velem>
<velem>
<value>DNAPAM280</value>
<label>DNAPAM280</label>
</velem>
<velem>
<value>DNAPAM290</value>
<label>DNAPAM290</label>
</velem>
<velem>
<value>DNAPAM300</value>
<label>DNAPAM300</label>
</velem>
<velem>
<value>DNAPAM310</value>
<label>DNAPAM310</label>
</velem>
<velem>
<value>DNAPAM320</value>
<label>DNAPAM320</label>
</velem>
<velem>
<value>DNAPAM330</value>
<label>DNAPAM330</label>
</velem>
<velem>
<value>DNAPAM340</value>
<label>DNAPAM340</label>
</velem>
<velem>
<value>DNAPAM350</value>
<label>DNAPAM350</label>
</velem>
<velem>
<value>DNAPAM360</value>
<label>DNAPAM360</label>
</velem>
<velem>
<value>DNAPAM370</value>
<label>DNAPAM370</label>
</velem>
<velem>
<value>DNAPAM380</value>
<label>DNAPAM380</label>
</velem>
<velem>
<value>DNAPAM390</value>
<label>DNAPAM390</label>
</velem>
<velem>
<value>DNAPAM400</value>
<label>DNAPAM400</label>
</velem>
<velem>
<value>DNAPAM410</value>
<label>DNAPAM410</label>
</velem>
<velem>
<value>DNAPAM420</value>
<label>DNAPAM420</label>
</velem>
<velem>
<value>DNAPAM430</value>
<label>DNAPAM430</label>
</velem>
<velem>
<value>DNAPAM440</value>
<label>DNAPAM440</label>
</velem>
<velem>
<value>DNAPAM450</value>
<label>DNAPAM450</label>
</velem>
<velem>
<value>DNAPAM460</value>
<label>DNAPAM460</label>
</velem>
<velem>
<value>DNAPAM470</value>
<label>DNAPAM470</label>
</velem>
<velem>
<value>DNAPAM480</value>
<label>DNAPAM480</label>
</velem>
<velem>
<value>DNAPAM490</value>
<label>DNAPAM490</label>
</velem>
<velem>
<value>DNAPAM500</value>
<label>DNAPAM500</label>
</velem>
</vlist>
<format>
<code proglang="perl">(defined $value and $value ne $vdef) ? " -m $value" : ""</code>
<code proglang="python">("", " -m "+str(value))[value is not None and value!=vdef]</code>
</format>
<argpos>3</argpos>
<comment>
<text lang="en">For nucleotide input sequences, BMGE uses PAM matrices with a
fixed transition/transition ratio. BMGE can be used with all
possible PAM matrices, from the most stringent (i.e. DNAPAM1) to
highly relaxed ones (e.g. DNAPAM500). By default with nucleotide
sequences, BMGE uses the PAM-100 matrix.</text>
<text lang="en">It is also possible to use the identity matrix.</text>
</comment>
</parameter>
<parameter>
<name>transition</name>
<prompt lang="en">Transition/transversion ratio for nucleotide sequences.</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<precond>
<code proglang="perl">$input_type eq 'DNA' and ($matrixan ne 'DNAPAM100' and $matrixan ne 'ID' )</code>
<code proglang="python">input_type in ['DNA'] and (matrixan != 'DNAPAM100' and matrixan != 'ID' )</code>
</precond>
<vdef>
<value>2.0</value>
</vdef>
<format>
<code proglang="perl">(defined $value) ? ":$value " : ""</code>
<code proglang="python">("", ":" +str(value) + " ")[value is not None]</code>
</format>
<argpos>4</argpos>
<comment>
<text lang="en">It is possible to indicate a transition/transversion ratio to
better define the PAM matrices with nucleotide sequences. By
default, BMGE uses a transition/transversion ratio of 2.</text>
</comment>
</parameter>
<parameter>
<name>gap_rate_cutoff</name>
<prompt lang="en">Gap Rate Cut-off (-g)</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<vdef>
<value>0.2</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -g $value" : ""</code>
<code proglang="python">("", " -g "+str(value))[value is not None and value!=vdef]</code>
</format>
<ctrl>
<message>
<text lang="en">The value must be between 0 and 1</text>
</message>
<code proglang="perl">$value >= 0 and $value <= 1</code>
<code proglang="python">value >= 0 and value <= 1</code>
</ctrl>
<argpos>5</argpos>
<comment>
<text lang="en">BMGE allows characters containing too many gaps to be removed
with this option. By default, BMGE removes all characters with a
gap frequency greater than 0.2.</text>
</comment>
</parameter>
<parameter>
<name>min_entropy</name>
<prompt lang="en">Minimum entropy Score Cut-off (-h)</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<vdef>
<value>0.0</value>
</vdef>
<format>
<code proglang="perl">(($max_entropy != 0.5 or $value != $vdef) and ($max_entropy > $value)) ? " -h $value:$max_entropy" : ""</code>
<code proglang="python">("", " -h %s:%s " % ( value, max_entropy) )[ (max_entropy != 0.5 or value !=vdef) and (max_entropy > value) ]</code>
</format>
<ctrl>
<message>
<text lang="en">The value must be between 0 and 1</text>
</message>
<code proglang="perl">$value >= 0 and $value <= 1</code>
<code proglang="python">value >= 0 and value <= 1</code>
</ctrl>
<argpos>6</argpos>
<comment>
<text lang="en">Following the smoothing operation of the entropy-like score
values across characters, BMGE selects characters associated with
a score value greater than a fixed threshold. This cut-off is set
to 0.0 by default.</text>
</comment>
</parameter>
<parameter>
<name>max_entropy</name>
<prompt lang="en">Maximum entropy Score Cut-off (-h)</prompt>
<type>
<datatype>
<class>Float</class>
</datatype>
</type>
<vdef>
<value>0.5</value>
</vdef>
<precond>
<code proglang="perl">defined $min_entropy</code>
<code proglang="python">min_entropy is not None</code>
</precond>
<ctrl>
<message>
<text lang="en">The value must be between 0 and 1 and greather than minimun entropy score</text>
</message>
<code proglang="perl">($value >= 0 and $value <= 1) and ($value > $min_entropy)</code>
<code proglang="python">(value >= 0 and value <= 1) and (value > min_entropy)</code>
</ctrl>
<argpos>6</argpos>
<comment>
<text lang="en">Following the smoothing operation of the entropy-like score
values across characters, BMGE selects characters associated with
a score value below a fixed threshold. This cut-off is set to 0.5
by default.</text>
</comment>
</parameter>
<parameter>
<name>minimun_block_size</name>
<prompt lang="en">Minimum Block Size (-b)</prompt>
<type>
<datatype>
<class>Integer</class>
</datatype>
</type>
<vdef>
<value>5</value>
</vdef>
<format>
<code proglang="perl">(defined $value and $value != $vdef) ? " -b $value" : ""</code>
<code proglang="python">("", " -b "+str(value) )[value is not None and value!=vdef]</code>
</format>
<comment>
<text lang="en">BMGE only selects regions of size greater than or equal to 5. Use
this option to modify this minimum block size parameter.</text>
</comment>
<argpos>7</argpos>
</parameter>
<!--<parameter>
<name>trimming</name>
<prompt lang="en">Stationary-based Trimming (-s)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">($value) ? " -s" : ""</code>
<code proglang="python">("", " -s " )[ value ]</code>
</format>
<comment>
<text lang="en">By setting this option to YES (NO by default), BMGE performs another
character trimming until the remaining characters are compositionally homogeneous, as
assessed by Stuart's (1955) test of marginal homogeneity between each pair of sequences.
If an html file is created (-oh), then all the Stuart's (1955) p-values estimated before and after
the stationary-based trimming will be written.</text>
<text lang="en">It should be stressed that the stationary-based trimming is biased with short
alignments (e.g. less than 1,000 character length); consequently, it is more efficient on a
supermatrix of characters. Unfortunately, the running time is quite long (e.g. several hours
for more than 10,000 amino acid characters).</text>
</comment>
<argpos>8</argpos>
</parameter>
-->
</parameters>
</paragraph>
<paragraph>
<name>output_option</name>
<prompt lang="en">Output format options</prompt>
<parameters>
<parameter>
<name>phylip</name>
<prompt lang="en">Output in phylip sequential format (-op)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<precond>
<code proglang="perl">defined $infile</code>
<code proglang="python">infile is not None</code>
</precond>
<vdef>
<value>1</value>
</vdef>
<format>
<code proglang="perl">( $value ) ? " -op $infile.phy" : ""</code>
<code proglang="python">("", " -op "+ infile.split('.')[0] + ".phy ")[ value ]</code>
</format>
<argpos>9</argpos>
</parameter>
<parameter isout="1">
<name>phylipout</name>
<prompt lang="en">Output in phylip sequential format</prompt>
<type>
<datatype>
<class>Alignment</class>
</datatype>
<dataFormat>PHYLIPS</dataFormat>
</type>
<precond>
<code proglang="perl">$phylip</code>
<code proglang="python">phylip</code>
</precond>
<filenames>
<code proglang="perl">"$infile.phy"</code>
<code proglang="python">infile.split('.')[0] + ".phy"</code>
</filenames>
</parameter>
<parameter>
<name>phylip_oppp</name>
<prompt lang="en">Output in phylip sequential format. Special formating (-oppp)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<precond>
<code proglang="perl">defined $infile</code>
<code proglang="python">infile is not None</code>
</precond>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">( $value ) ? " -oppp $infile.phyp" : ""</code>
<code proglang="python">("", " -oppp "+ infile.split('.')[0] + ".phyp ")[ value]</code>
</format>
<argpos>9</argpos>
<comment>
<text lang="en">If input sequences are in FASTA format with NCBI-formatted annotation lines, e.g.
>field1|field2|field3|field4| field5 [field6]
the options -oppp allow naming sequences by field6_____field4 ; knowing that field4 is generally
an accession number, and field6 a
taxon name, this option leads to PHYLIP files where each sequence is labelled as a
taxon name and an accession number.</text>
</comment>
</parameter>
<parameter isout="1">
<name>phylipout_oppp</name>
<prompt lang="en">Output in phylip sequential format</prompt>
<type>
<datatype>
<class>Alignment</class>
</datatype>
<dataFormat>PHYLIPS</dataFormat>
</type>
<precond>
<code proglang="perl">$phylip_oppp</code>
<code proglang="python">phylip_oppp</code>
</precond>
<filenames>
<code proglang="perl">"$infile.phyp"</code>
<code proglang="python">infile.split('.')[0] + ".phyp"</code>
</filenames>
</parameter>
<parameter>
<name>nexus</name>
<prompt lang="en">Output in nexus format (-on)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<precond>
<code proglang="perl">defined $infile</code>
<code proglang="python">infile is not None</code>
</precond>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">( $value ) ? " -on $infile.nex" : ""</code>
<code proglang="python">("", " -on "+ infile.split('.')[0] + ".nex ")[ value ]</code>
</format>
<argpos>9</argpos>
</parameter>
<parameter isout="1">
<name>nexusout</name>
<prompt lang="en">Output in nexus format</prompt>
<type>
<datatype>
<class>Alignment</class>
</datatype>
<dataFormat>NEXUS</dataFormat>
</type>
<precond>
<code proglang="perl">$nexus</code>
<code proglang="python">nexus</code>
</precond>
<filenames>
<code proglang="perl">"$infile.nex"</code>
<code proglang="python">infile.split('.')[0] + ".nex"</code>
</filenames>
</parameter>
<parameter>
<name>nexus_onnn</name>
<prompt lang="en">Output in nexus format. Special formating (-onnn)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<precond>
<code proglang="perl">defined $infile</code>
<code proglang="python">infile is not None</code>
</precond>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">( $value ) ? " -onnn $infile.nexn" : ""</code>
<code proglang="python">("", " -onnn "+ infile.split('.')[0] + ".nexn ")[ value ]</code>
</format>
<argpos>9</argpos>
<comment>
<text lang="en">If input sequences are in FASTA format with NCBI-formatted
annotation lines,
e.g. >field1|field2|field3|field4| field5 [field6]
the option -onnn allow naming sequences by field6_____field4 ;
knowing that field4 is generally an accession number and field6 a
taxon name, this option leads to NEXUS files where each sequence
is labelled as a taxon name and an accession number.</text>
</comment>
</parameter>
<parameter isout="1">
<name>nexusout_onnn</name>
<prompt lang="en">Output in nexus format</prompt>
<type>
<datatype>
<class>Alignment</class>
</datatype>
<dataFormat>NEXUS</dataFormat>
</type>
<precond>
<code proglang="perl">$nexus_onnn</code>
<code proglang="python">nexus_onnn</code>
</precond>
<filenames>
<code proglang="perl">"$infile.nexn"</code>
<code proglang="python">infile.split('.')[0] + ".nexn"</code>
</filenames>
</parameter>
<parameter>
<name>fasta</name>
<prompt lang="en">Output in fasta format (-of)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<precond>
<code proglang="perl">defined $infile</code>
<code proglang="python">infile is not None</code>
</precond>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">( $value ) ? " -of $infile.fa" : ""</code>
<code proglang="python">("", " -of "+ infile.split('.')[0] + ".fa ")[ value ]</code>
</format>
<argpos>10</argpos>
</parameter>
<parameter isout="1">
<name>fastaout</name>
<prompt lang="en">Output in fasta format</prompt>
<type>
<datatype>
<class>Alignment</class>
</datatype>
<dataFormat>FASTA</dataFormat>
</type>
<precond>
<code proglang="perl">$fasta</code>
<code proglang="python">fasta</code>
</precond>
<filenames>
<code proglang="perl">"$infile.fa"</code>
<code proglang="python">infile.split('.')[0] + ".fa"</code>
</filenames>
</parameter>
<parameter>
<name>html</name>
<prompt lang="en">Output in html format (-oh)</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<precond>
<code proglang="perl">defined $infile</code>
<code proglang="python">infile is not None</code>
</precond>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">( $value ) ? " -oh $infile.html" : ""</code>
<code proglang="python">("", " -oh "+ infile.split('.')[0] + ".html ")[ value ]</code>
</format>
<argpos>11</argpos>
</parameter>
<parameter isout="1">
<name>htmlout</name>
<prompt lang="en">Output in html format</prompt>
<type>
<datatype>
<class>Report</class>
</datatype>
</type>
<precond>
<code proglang="perl">$html</code>
<code proglang="python">html</code>
</precond>
<filenames>
<code proglang="perl">"$infile.html"</code>
<code proglang="python">infile.split('.')[0] + ".html"</code>
</filenames>
</parameter>
</parameters>
</paragraph>
</parameters>
</program>
|