This file is indexed.

/var/lib/mobyle/programs/hmmscan.xml is in mobyle-programs 5.1.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
<?xml version='1.0' encoding='UTF-8'?>
<!-- XML Authors: Corinne Maufrais                                               -->
<!-- 'Biological Software and Databases' Group, Institut Pasteur, Paris.         -->
<!-- Distributed under LGPLv2 License. Please refer to the COPYING.LIB document. -->
<program>
  <head>
    <name>hmmscan</name>
    <xi:include xmlns:xi="http://www.w3.org/2001/XInclude" href="Entities/hmmer_package.xml"/>
    <doc>
      <title>HMMSCAN</title>
      <description>
        <text lang="en">Search sequence(s) against pfam a profile HMM database</text>
      </description>
      <comment>
        <text lang="en">hmmscan reads sequence(s) from seqfile and compares it against all the HMMs in pfam 
        database looking for significantly similar sequence matches. 
        The output consists of three sections: a ranked list of the best scoring HMMs, 
        a list of the best scoring domains in order of their occurrence in the sequence, 
        and alignments for all the best scoring domains. A sequence score may be higher than a 
        domain score for the same sequence if there is more than one domain in the sequence; 
        the sequence score takes into account all the domains. All sequences scoring above the
         -E and -T cutoffs are shown in the first list, then every domain found in this list is shown
        in the second list of domain hits. If desired, E-value and score thresholds may also be applied
        to the domain list using the --domE and --domT options.
	</text>
      </comment>
    </doc>
    <category>hmm:database:search</category>
    <category>database:search:hmm</category>
    <command>hmmscan</command>
  </head>
  <parameters>
    <parameter ismandatory="1" issimple="1">
      <name>seqfile</name>
      <prompt lang="en">Sequence file</prompt>
      <type>
        <datatype>
          <class>Sequence</class>
        </datatype>
        <dataFormat>FASTA</dataFormat>
      </type>
      <format>
        <code proglang="perl">" $value"</code>
        <code proglang="python">" "+str(value)</code>
      </format>
      <argpos>3</argpos>
    </parameter>
    <parameter issimple="1">
      <name>HMMDB</name>
      <prompt lang="en">HMM database</prompt>
      <type>
        <datatype>
          <class>Choice</class>
        </datatype>
      </type>
      <vdef>
        <value>Pfam-A.hmm</value>
      </vdef>
      <vlist>
        <velem>
          <value>Pfam-A.hmm</value>
          <label>Pfam-A</label>
        </velem>
        <velem>
          <value>Pfam-B.hmm</value>
          <label>Pfam-B</label>
        </velem>
      </vlist>
      <format>
        <code proglang="perl">" $value"</code>
        <code proglang="python">" "+str(value)</code>
      </format>
      <argpos>2</argpos>
    </parameter>
    <paragraph>
      <name>thresholds_report</name>
      <prompt lang="en">Options for reporting thresholds</prompt>
      <argpos>1</argpos>
      <parameters>
        <parameter issimple="1">
          <name>E_value_cutoff</name>
          <prompt lang="en">E_value cutoff (-E)</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">not defined $Bit_cutoff and $model_specific ne '--cut_ga' and $model_specific ne '--cut_nc'</code>
            <code proglang="python">Bit_cutoff is None and model_specific != '--cut_ga' and model_specific != '--cut_nc'</code>
          </precond>
          <vdef>
            <value>10.0</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " -E $value" : ""</code>
            <code proglang="python">( "" , " -E " + str(value) )[ value is not None and value != vdef]</code>
          </format>
          <argpos>1</argpos>
          <comment>
            <text lang="en">In the per-target output, report target profiles with an E-value of &lt;= value. The
        default is 10.0, meaning that on average, about 10 false positives will be reported
        per query, so you can see the top of the 'noise' and decide for yourself if it's really
        noise.</text>
          </comment>
        </parameter>
        <parameter>
          <name>Bit_cutoff</name>
          <prompt lang="en">Bit score cutoff (-T)</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">$E_value_cutoff == 10.0 and $model_specific ne '--cut_ga' and $model_specific ne '--cut_nc'</code>
            <code proglang="python">E_value_cutoff == 10.0 and model_specific != '--cut_ga' and model_specific != '--cut_nc'</code>
          </precond>
          <format>
            <code proglang="perl">(defined $value)? " -T $value" : ""</code>
            <code proglang="python">( "" , " -T " + str(value) )[ value is not None ]</code>
          </format>
          <argpos>1</argpos>
          <comment>
            <text lang="en">Instead of thresholding per-profile output on E-value, instead report target profiles
        with a bit score of &gt;= value.</text>
          </comment>
        </parameter>
        <parameter>
          <name>domE</name>
          <prompt lang="en">E-value cutoff for the per-domain ranked hit list (--domE)</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">not defined $domT and $model_specific ne '--cut_ga' and $model_specific ne '--cut_nc'</code>
            <code proglang="python">domT is None and model_specific != '--cut_ga' and model_specific != '--cut_nc'</code>
          </precond>
          <vdef>
            <value>10.0</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " --domE $value" : ""</code>
            <code proglang="python">( "" , " --domE " + str(value) )[ value is not None and value !=vdef ]</code>
          </format>
          <comment>
            <text lang="en">In the per-domain output, for target profiles that have already satisfied the perprofile
            reporting threshold, report individual domains with a conditional E-value
            of &lt;= value. The default is 10.0. A 'conditional' E-value means the expected
            number of additional false positive domains in the smaller search space of those
            comparisons that already satisfied the per-profile reporting threshold (and thus
            must have at least one homologous domain already).</text>
          </comment>
        </parameter>
        <parameter>
          <name>domT</name>
          <prompt lang="en">Bit score cutoff for the per-domain ranked hit list  (--domT)</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">$domE == 10.0 and $model_specific ne '--cut_ga' and $model_specific ne '--cut_nc'</code>
            <code proglang="python">domE == 10.0 and model_specific != '--cut_ga' and model_specific != '--cut_nc'</code>
          </precond>
          <format>
            <code proglang="perl">(defined $value) ? " --domT $value" : ""</code>
            <code proglang="python">( "" , " --domT " + str(value) )[ value is not None ]</code>
          </format>
          <comment>
            <text lang="en">Instead of thresholding per-domain output on E-value, instead report domains with
              a bit score of &gt;= value.</text>
          </comment>
        </parameter>
        <paragraph>
          <name>thresholds_inclusion</name>
          <prompt lang="en">Options controlling inclusion (significance) thresholds.</prompt>
          <argpos>1</argpos>
          <comment>
            <text lang="en">'Inclusion' thresholds are stricter than reporting thresholds. Inclusion thresholds 
            control which hits are considered to be reliable enough to be included in an output alignment or a 
            subsequent search round. In hmmscan, which does not have any alignment output  nor any iterative
            search steps, inclusion thresholds have little effect. They only affect what domains get
            marked as significant ('!') or questionable ('?') in domain output.</text>
          </comment>
          <parameters>
            <parameter>
              <name>incE</name>
              <prompt lang="en">Include sequences lower than this E-value threshold (--incE)</prompt>
              <type>
                <datatype>
                  <class>Float</class>
                </datatype>
              </type>
              <precond>
                <code proglang="perl">not defined $incT and $model_specific ne '--cut_ga' </code>
                <code proglang="python">incT is None and model_specific != '--cut_ga' </code>
              </precond>
              <vdef>
                <value>0.01</value>
              </vdef>
              <format>
                <code proglang="perl">(defined $value and value != vdef) ? " --incE $value" : ""</code>
                <code proglang="python">( "" , " --incE " + str(value) )[ value is not None and value != vdef]</code>
              </format>
              <comment>
                <text lang="en">Use an E-value of &lt;= value as the per-target inclusion threshold. The default is
              0.01, meaning that on average, about 1 false positive would be expected in every
              100 searches with different query sequences.</text>
              </comment>
            </parameter>
            <parameter>
              <name>incdomE</name>
              <prompt lang="en">Include domains lower than this E-value threshold  (--incdomE)</prompt>
              <type>
                <datatype>
                  <class>Float</class>
                </datatype>
              </type>
              <precond>
                <code proglang="perl">defined $incdomT and not defined model_specific</code>
                <code proglang="python">incdomT is not None and model_specific is None</code>
              </precond>
              <vdef>
                <value>0.01</value>
              </vdef>
              <format>
                <code proglang="perl">(defined $value and value != vdef) ? " --incdomE $value" : ""</code>
                <code proglang="python">( "" , " --incdomE " + str(value) )[ value is not None and value != vdef]</code>
              </format>
              <comment>
                <text lang="en">Use a conditional E-value of &lt;= value as the per-domain inclusion threshold, in
              targets that have already satisfied the overall per-target inclusion threshold. The
              default is 0.01.</text>
              </comment>
            </parameter>
            <parameter>
              <name>incT</name>
              <prompt lang="en">Include sequences upper than this score threshold  (--incT)</prompt>
              <type>
                <datatype>
                  <class>Float</class>
                </datatype>
              </type>
              <precond>
                <code proglang="perl">$incE == 0.01 and $model_specific ne '--cut_ga'</code>
                <code proglang="python">incE == 0.01 and model_specific != '--cut_ga'</code>
              </precond>
              <format>
                <code proglang="perl">(defined $value) ? " --incT $value" : ""</code>
                <code proglang="python">( "" , " --incT " + str(value) )[ value is not None ]</code>
              </format>
              <comment>
                <text lang="en">Instead of using E-values for setting the inclusion threshold, instead use a bit score
                of &gt;= the value as the per-target inclusion threshold. It would be unusual to use bit
                score thresholds with hmmscan, because you don't expect a single score threshold
                to work for different profiles; different profiles have slightly different expected score
                distributions.</text>
              </comment>
            </parameter>
            <parameter>
              <name>incdomT</name>
              <prompt lang="en">Include domans upper than this score threshold  (--incdomT)</prompt>
              <type>
                <datatype>
                  <class>Float</class>
                </datatype>
              </type>
              <precond>
                <code proglang="perl">$incdomE == 0.01 and not defined $model_specific </code>
                <code proglang="python">incdomE == 0.01 and model_specific is None</code>
              </precond>
              <format>
                <code proglang="perl">(defined $value) ? " --incdomT $value" : ""</code>
                <code proglang="python">( "" , " --incdomT " + str(value) )[ value is not None ]</code>
              </format>
              <comment>
                <text lang="en">Instead of using E-values, instead use a bit score of &gt;= value as the per-domain
                inclusion threshold. As with --incT above, it would be unusual to use a single bit
                score threshold in hmmscan.</text>
              </comment>
            </parameter>
          </parameters>
        </paragraph>
        <parameter>
          <name>model_specific</name>
          <prompt lang="en">Options for model-specific thresholding</prompt>
          <type>
            <datatype>
              <class>Choice</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">not defined $Bit_cutoff and not $E_value_cutoff == 10.0 and not defined $incdomT and  $incdomE == 0.01</code>
            <code proglang="python">not Bit_cutoff and E_value_cutoff == 10.0 and incdomT is None and incdomE == 0.01</code>
          </precond>
          <vdef>
            <value>null</value>
          </vdef>
          <vlist>
            <velem undef="1">
              <value>null</value>
              <label>No profile</label>
            </velem>
            <velem>
              <value>--cut_ga</value>
              <label>use profile's GA gathering cutoffs (cut_ga)</label>
            </velem>
            <velem>
              <value>--cut_nc</value>
              <label>use profile's NC noise cutoffs (cut_nc)</label>
            </velem>
            <velem>
              <value>--cut_tc</value>
              <label>use profile's TC trusted cutoffs (cut_tc)</label>
            </velem>
          </vlist>
          <format>
            <code proglang="perl">(defined $value and $value ne $vdef) ? " $value" : ""</code>
            <code proglang="python">( "" , " " + str(value) )[ value is not None and value != vdef]</code>
          </format>
          <comment>
            <text lang="en">Curated profile databases may define specific bit score thresholds for each profile, superseding any thresholding
            based on statistical significance alone. To use these options, the profile must contain the appropriate
            (GA, TC, and/or NC) optional score threshold annotation; this is picked up by hmmbuild from Stockholm
            format alignment files. Each thresholding option has two scores: the per-sequence threshold x1 value and the
            per-domain threshold x2 value. These act as if -T x1 --incT x1 --domT x2 --incdomT x2 has been
            applied specifically using each model's curated thresholds.</text>
            <text lang="en">cut ga: Use the GA (gathering) bit scores in the model to set per-sequence (GA1) and
            per-domain (GA2) reporting and inclusion thresholds. GA thresholds are generally
            considered to be the reliable curated thresholds defining family membership; for
            example, in Pfam, these thresholds define what gets included in Pfam Full alignments
            based on searches with Pfam Seed models.</text>
            <text lang="en">cut_nc: Use the NC (noise cutoff) bit score thresholds in the model to set per-sequence
            (NC1) and per-domain (NC2) reporting and inclusion thresholds. NC thresholds
            are generally considered to be the score of the highest-scoring known false positive.</text>
            <text lang="en">cut_tc: Use the NC (trusted cutoff) bit score thresholds in the model to set per-sequence
            (TC1) and per-domain (TC2) reporting and inclusion thresholds. TC thresholds are
            generally considered to be the score of the lowest-scoring known true positive that
            is above all known false positives.</text>
          </comment>
        </parameter>
      </parameters>
    </paragraph>
    <paragraph>
      <name>acceleration</name>
      <prompt lang="en">Options controlling acceleration heuristics</prompt>
      <argpos>1</argpos>
      <comment>
        <text lang="en">HMMER3 searches are accelerated in a three-step filter pipeline: the MSV filter, the Viterbi filter, and
            the Forward filter. The first filter is the fastest and most approximate; the last is the full Forward scoring
            algorithm. There is also a 'bias filter' step between MSV and Viterbi. Targets that pass all the steps
            in the acceleration pipeline are then subjected to 'postprocessing' -- domain identification and scoring
            using the Forward/Backward algorithm. Changing filter thresholds only removes or includes targets from
            consideration; changing filter thresholds does not alter bit scores, E-values, or alignments, all of which are
            determined solely in 'postprocessing'.</text>
      </comment>
      <parameters>
        <parameter>
          <name>max</name>
          <prompt lang="en">Turn all heuristic filters off (less speed, more power) (--max)</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <vdef>
            <value>0</value>
          </vdef>
          <format>
            <code proglang="perl">($value) ? " --max" : ""</code>
            <code proglang="python">( "" , " --max " )[ value ]</code>
          </format>
          <comment>
            <text lang="en">Turn off all filters, including the bias filter, and run full Forward/Backward postprocessing
              on every target. This increases sensitivity somewhat, at a large cost in speed.</text>
          </comment>
        </parameter>
        <parameter>
          <name>F1</name>
          <prompt>Stage 1 (MSV) threshold</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">not max</code>
            <code proglang="python">not max</code>
          </precond>
          <vdef>
            <value>0.02</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef ) ? " --F1 $value" : ""</code>
            <code proglang="python">( "" , " --F1 " + str(value) )[ value is not None and value != vdef]</code>
          </format>
          <comment>
            <text lang="en">Set the P-value threshold for the MSV filter step. The default is 0.02, meaning that
            roughly 2% of the highest scoring nonhomologous targets are expected to pass the filter.</text>
          </comment>
        </parameter>
        <parameter>
          <name>F2</name>
          <prompt>Stage 1 (Vit) threshold</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">not max</code>
            <code proglang="python">not max</code>
          </precond>
          <vdef>
            <value>0.001</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef ) ? " --F2 $value" : ""</code>
            <code proglang="python">( "" , " --F2 " + str(value) )[ value is not None and value != vdef]</code>
          </format>
          <comment>
            <text lang="en">Set the P-value threshold for the Viterbi filter step. The default is 0.001.</text>
          </comment>
        </parameter>
        <parameter>
          <name>F3</name>
          <prompt>Stage 1 (Fwd) threshold</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">not max</code>
            <code proglang="python">not max</code>
          </precond>
          <vdef>
            <value>0.00001</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef ) ? " --F3 $value" : ""</code>
            <code proglang="python">( "" , " --F3 " + str(value) )[ value is not None and value != vdef]</code>
          </format>
          <comment>
            <text lang="en">Set the P-value threshold for the Forward filter step. The default is 1e-5.</text>
          </comment>
        </parameter>
        <parameter>
          <name>nobias</name>
          <prompt lang="en">Turn off composition bias filter (--nobias)</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">not max</code>
            <code proglang="python">not max</code>
          </precond>
          <vdef>
            <value>0</value>
          </vdef>
          <format>
            <code proglang="perl">($value) ? " --nobias" : ""</code>
            <code proglang="python">( "" , " --nobias " )[ value ]</code>
          </format>
          <comment>
            <text lang="en">Turn off the bias filter. This increases sensitivity somewhat, but can come at a
            high cost in speed, especially if the query has biased residue composition (such
            as a repetitive sequence region, or if it is a membrane protein with large regions
            of hydrophobicity). Without the bias filter, too many sequences may pass the filter
            with biased queries, leading to slower than expected performance as the computationally
            intensive Forward/Backward algorithms shoulder an abnormally heavy
            load.</text>
          </comment>
        </parameter>
      </parameters>
    </paragraph>
    <paragraph>
      <name>expert</name>
      <prompt lang="en">Other expert options</prompt>
      <argpos>1</argpos>
      <parameters>
        <parameter>
          <name>nonull2</name>
          <prompt lang="en">Turn off biased composition score corrections (--nonull2)</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <vdef>
            <value>0</value>
          </vdef>
          <format>
            <code proglang="perl">($value) ? " --nonull2" : ""</code>
            <code proglang="python">( "" , " --nonull2 " )[ value ]</code>
          </format>
          <comment>
            <text lang="en">Turn off the 'null2' score corrections for biased composition.</text>
          </comment>
        </parameter>
        <parameter>
          <name>E_value_calculation</name>
          <prompt lang="en">Control of E_value calculation (-Z)</prompt>
          <type>
            <datatype>
              <class>Integer</class>
            </datatype>
          </type>
          <format>
            <code proglang="perl">(defined $value) ? " -Z $value" : ""</code>
            <code proglang="python">( "" , " -Z " + str(value) )[ value is not None ]</code>
          </format>
          <argpos>1</argpos>
          <comment>
            <text lang="en">Assert that the total number of targets in your searches is the value, for the purposes of
          per-sequence E-value calculations, rather than the actual number of targets seen.</text>
          </comment>
        </parameter>
        <parameter>
          <name>domZ</name>
          <prompt lang="en">Set Z score of significant sequences, for domain E-value calculation  (--domZ)</prompt>
          <type>
            <datatype>
              <class>Float</class>
            </datatype>
          </type>
          <format>
            <code proglang="perl">(defined $value) ? " --domZ $value" : ""</code>
            <code proglang="python">( "" , " --domZ " + str(value) )[ value is not None ]</code>
          </format>
          <comment>
            <text lang="en">Assert that the total number of targets in your searches is the value, for the purposes
          of per-domain conditional E-value calculations, rather than the number of targets
          that passed the reporting thresholds.</text>
          </comment>
        </parameter>
        <parameter>
          <name>seed</name>
          <prompt lang="en">Set RNG seed number (--seed)</prompt>
          <type>
            <datatype>
              <class>Integer</class>
            </datatype>
          </type>
          <vdef>
            <value>42</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " --seed $value " : ""</code>
            <code proglang="python">( "" , " --seed " + str(value) )[ value is not None and value !=vdef ]</code>
          </format>
          <comment>
            <text lang="en">Set the random number seed to value. Some steps in postprocessing require Monte
               Carlo simulation. The default is to use a fixed seed (42), so that results are exactly
               reproducible. Any other positive integer will give different (but also reproducible)
               results. A choice of 0 uses a 'randomly chosen' seed.</text>
          </comment>
          <ctrl>
            <message>
              <text lang="en">Enter a value &gt;= 0</text>
            </message>
            <code proglang="perl">0 &lt;= $value</code>
            <code proglang="python">0 &lt;= value</code>
          </ctrl>
        </parameter>
      </parameters>
    </paragraph>
    <paragraph>
      <name>controlOutput</name>
      <prompt lang="en">Options controlling output</prompt>
      <parameters>
        <parameter>
          <name>outfile_name</name>
          <prompt lang="en">Name of the sequence(s) file (-o)</prompt>
          <type>
            <datatype>
              <class>Filename</class>
            </datatype>
          </type>
          <format>
            <code proglang="perl">(defined $value ) ? " -o $value" : ""</code>
            <code proglang="python">( " " , " -o " + str(value) )[ value is not None ]</code>
          </format>
          <argpos>1</argpos>
        </parameter>
        <parameter isout="1">
          <name>output_file_name</name>
          <prompt lang="en">Output file</prompt>
          <type>
            <datatype>
              <class>Text</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">defined $outfile_name</code>
            <code proglang="python">outfile_name is not None</code>
          </precond>
          <filenames>
            <code proglang="perl">$outfile_name</code>
            <code proglang="python">str(outfile_name)</code>
          </filenames>
        </parameter>
        <parameter>
          <name>perseqfile_name</name>
          <prompt lang="en">File name of parseable table of per-sequence hits (--tblout)</prompt>
          <type>
            <datatype>
              <class>Filename</class>
            </datatype>
          </type>
          <format>
            <code proglang="perl">(defined $value) ? " --tblout $value" : ""</code>
            <code proglang="python">( "" , " --tblout " + str(value) )[ value is not None ]</code>
          </format>
          <comment>
            <text lang="en">Save a simple tabular (space-delimited) file summarizing the 'per-target' output,
        with one data line per homologous target model found</text>
          </comment>
          <argpos>1</argpos>
        </parameter>
        <parameter isout="1">
          <name>output_perseqfile_name</name>
          <prompt lang="en">Output parseable table of per-sequence hits</prompt>
          <type>
            <datatype>
              <class>Text</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">$perseqfile_name</code>
            <code proglang="python">perseqfile_name</code>
          </precond>
          <filenames>
            <code proglang="perl">$perseqfile_name</code>
            <code proglang="python">str(perseqfile_name)</code>
          </filenames>
        </parameter>
        <parameter>
          <name>perdomfile_name</name>
          <prompt lang="en">File name of parseable table of per-domain hits (--domtblout)</prompt>
          <type>
            <datatype>
              <class>Filename</class>
            </datatype>
          </type>
          <format>
            <code proglang="perl">(defined $value) ? " --domtblout $value" : ""</code>
            <code proglang="python">( "" , " --domtblout " + str(value) )[ value is not None ]</code>
          </format>
          <argpos>1</argpos>
          <comment>
            <text lang="en">Save a simple tabular (space-delimited) file summarizing the 'per-domain' output,
          with one data line per homologous domain detected in a query sequence for each
          homologous model.</text>
          </comment>
        </parameter>
        <parameter>
          <name>acc</name>
          <prompt lang="en">Prefer accessions over names in output</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <vdef>
            <value>0</value>
          </vdef>
          <format>
            <code proglang="perl">($value) ? " --acc " : ""</code>
            <code proglang="python">( "" , " --acc " )[ value ]</code>
          </format>
          <comment>
            <text lang="en">Use accessions instead of names in the main output, where available for profiles
        and/or sequences</text>
          </comment>
        </parameter>
        <parameter>
          <name>noali</name>
          <prompt lang="en">Don't output alignments, so output is smaller</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <vdef>
            <value>0</value>
          </vdef>
          <format>
            <code proglang="perl">($value) ? " --noali " : ""</code>
            <code proglang="python">( "" , " --noali " )[ value ]</code>
          </format>
          <comment>
            <text lang="en">Omit the alignment section from the main output. This can greatly reduce the
        output volume.</text>
          </comment>
        </parameter>
        <parameter>
          <name>notextw</name>
          <prompt lang="en">Unlimit ASCII text output line width (--notextw)</prompt>
          <type>
            <datatype>
              <class>Boolean</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">textw == 120</code>
            <code proglang="python">textw == 120</code>
          </precond>
          <vdef>
            <value>0</value>
          </vdef>
          <format>
            <code proglang="perl">($value) ? " --notextw " : ""</code>
            <code proglang="python">( "" , " --notextw " )[ value ]</code>
          </format>
          <comment>
            <text lang="en">Unlimit the length of each line in the main output. The default is a limit of 120
                characters per line, which helps in displaying the output cleanly on terminals and
                in editors, but can truncate target profile description lines.</text>
          </comment>
        </parameter>
        <parameter>
          <name>textw</name>
          <prompt lang="en">Set max width of ASCII text output lines (--textw)</prompt>
          <type>
            <datatype>
              <class>Integer</class>
            </datatype>
          </type>
          <vdef>
            <value>120</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef) ? " --textw $value " : ""</code>
            <code proglang="python">( "" , " --textw " + str(value) )[ value is not None and value !=vdef ]</code>
          </format>
          <comment>
            <text lang="en">Set the main output's line length limit to value&gt; characters per line. The default is
         120.</text>
          </comment>
        </parameter>
        <parameter isout="1">
          <name>output_perdomfile_name</name>
          <prompt lang="en">Output parseable table of per-domain hits</prompt>
          <type>
            <datatype>
              <class>Text</class>
            </datatype>
          </type>
          <precond>
            <code proglang="perl">$perdomfile_name</code>
            <code proglang="python">perdomfile_name</code>
          </precond>
          <filenames>
            <code proglang="perl">$perdomfile_name</code>
            <code proglang="python">str(perdomfile_name)</code>
          </filenames>
        </parameter>
      </parameters>
    </paragraph>
  </parameters>
</program>