This file is indexed.

/var/lib/mobyle/programs/mafft.xml is in mobyle-programs 5.1.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
<?xml version='1.0' encoding='UTF-8'?>
<!-- XML Authors: Corinne Maufrais, Nicolas Joly and Bertrand Neron, -->
<!-- 'Biological Software and Databases' Group, Institut Pasteur, Paris. -->
<!-- Distributed under LGPLv2 License. Please refer to the COPYING.LIB document. -->
<program>
  <head>
    <name>mafft</name>
    <version>6.849</version>
    <doc>
      <title>mafft</title>
      <description>
        <text lang="en">Multiple alignment program for amino acid or nucleotide sequences.</text>
      </description>
      <sourcelink>http://mafft.cbrc.jp/alignment/software/source.html</sourcelink>
      <homepagelink>http://mafft.cbrc.jp/alignment/software/</homepagelink>
      <authors>Kazutaka Katoh</authors>
     <reference doi="10.1093/bioinformatics/btq224">
          Katoh, Toh 2010 (Bioinformatics 26:1899-1900)
          Parallelization of the MAFFT multiple sequence alignment program.
          (describes the multithread version; Linux only)
     </reference>
        <reference doi="10.1007/978-1-59745-251-9_3">
             Katoh, Asimenos, Toh 2009 (Methods in Molecular Biology 537:39-64)
             Multiple Alignment of DNA Sequences with MAFFT. In Bioinformatics for DNA Sequence Analysis edited by D. Posada
             (outlines DNA alignment methods and several tips including group-to-group alignment and rough clustering of a large number of sequences)
        </reference>
        <reference doi="10.1186/1471-2105-9-212">
             Katoh, Toh 2008 (BMC Bioinformatics 9:212)
             Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework.
             (describes RNA structural alignment methods)
        </reference>
        <reference doi="10.1093/bib/bbn013">
             Katoh, Toh 2008 (Briefings in Bioinformatics 9:286-298)
             Recent developments in the MAFFT multiple sequence alignment program.
             (outlines version 6; Fast Breaking Paper in Thomson Reuters' ScienceWatch)
        </reference>
        <reference doi="10.1093/bioinformatics/btl592">
            Katoh, Toh 2007 (Bioinformatics 23:372-374) Errata
            PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences.
            (describes the PartTree algorithm)
        </reference>
        <reference doi="10.1093/nar/gki198">
             Katoh, Kuma, Toh, Miyata 2005 (Nucleic Acids Res. 33:511-518)
             MAFFT version 5: improvement in accuracy of multiple sequence alignment.
             (describes [ancestral versions of] the G-INS-i, L-INS-i and E-INS-i strategies)
        </reference>
        <reference doi="10.1093/nar/gkf436">
            Katoh, Misawa, Kuma, Miyata 2002 (Nucleic Acids Res. 30:3059-3066)
            MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.
            (describes the FFT-NS-1, FFT-NS-2 and FFT-NS-i strategies)
        </reference>
      <doclink>http://mafft.cbrc.jp/alignment/software/about.html</doclink>
    </doc>
    <category>alignment:multiple</category>
  </head>
  <parameters>
    <paragraph>
      <name>input_opt</name>
      <prompt lang="en">Input Options</prompt>
      <parameters>

        <parameter ismandatory="1" issimple="1">
          <name>sequences</name>
          <prompt lang="en">Sequences File ( a file containing several sequences ).</prompt>
          <type>
            <datatype>
              <class>Sequence</class>
            </datatype>
            <dataFormat>FASTA</dataFormat>
          </type>
          <format>
            <code proglang="perl">" $sequences"</code>
            <code proglang="python">" " + str( sequences )</code>
          </format>
          <argpos>1000</argpos>
        </parameter>

        <parameter>
          <name>seq_type</name>
          <prompt lang="en">Sequences type</prompt>
          <type>
            <datatype>
              <class>Choice</class>
            </datatype>
          </type>
          <vdef>
            <value>null</value>
          </vdef>
          <flist>
            <felem undef="1">
              <value>null</value>
              <label>Automatic</label>
              <code proglang="perl">''</code>
              <code proglang="python">''</code>
            </felem>
            <felem>
              <value>nuc</value>
              <label>Assume the sequences are nucleotide.</label>
              <code proglang="perl">" --nuc "</code>
              <code proglang="python">" --nuc "</code>
            </felem>
            <felem>
              <value>amino</value>
              <label>Assume the sequences are amino acid.</label>
              <code proglang="perl">" --amino "</code>
              <code proglang="python">" --amino "</code>
            </felem>
          </flist>
        </parameter>
        
        <paragraph>
           <name>seed</name>
           <prompt>Use structural alignment(s)</prompt>
           <parameters>
             
             <parameter>
               <name>seed_1</name>
               <prompt>Structural alignment 1</prompt>
               <type>
                  <datatype>
                     <class>Alignment</class>
                  </datatype>
                  <dataFormat>FASTA</dataFormat>
               </type>
               <format>
                  <code proglang="perl">(defined $value)? " --seed $value ": ""</code>
                  <code proglang="python">( "" , " --seed "+str(value))[value is not None]</code>
               </format>
               <comment>
                  <text lang="en">These sequences will be aligned with the 'input' sequences above, being used as a constraint. </text>
               </comment>
             </parameter>
           
           <parameter>
               <name>seed_2</name>
               <prompt>Structural alignment 1</prompt>
               <type>
                  <datatype>
                     <class>Alignment</class>
                  </datatype>
                  <dataFormat>FASTA</dataFormat>
               </type>
               <format>
                  <code proglang="perl">(defined $value)? " --seed $value ": ""</code>
                  <code proglang="python">( "" , " --seed "+str(value))[value is not None]</code>
               </format>
               <comment>
                  <text lang="en">These sequences will be aligned with the 'input' sequences above, being used as a constraint. </text>
               </comment>
             </parameter>
           
           <parameter>
               <name>seed_3</name>
               <prompt>Structural alignment 1</prompt>
               <type>
                  <datatype>
                     <class>Alignment</class>
                  </datatype>
                  <dataFormat>FASTA</dataFormat>
               </type>
               <format>
                  <code proglang="perl">(defined $value)? " --seed $value ": ""</code>
                  <code proglang="python">( "" , " --seed "+str(value))[value is not None]</code>
               </format>
               <comment>
                  <text lang="en">These sequences will be aligned with the 'input' sequences above, being used as a constraint. </text>
               </comment>
             </parameter>
           
           </parameters>
           <comment>
             <text lang="en">Seed alignments given in alignment (fasta format) are aligned with sequences in input.  The alignment within every seed is preserved.</text>
           </comment>
        </paragraph>
   <parameter>
    <name>anysymbol</name>
    <prompt lang="en">Allow unusual symbols (Selenocysteine "U", Inosine "i", non-alphabetical characters, etc.)</prompt>
    <type>
      <datatype>
        <class>Boolean</class>
      </datatype>
    </type>
    <vdef>
      <value>0</value>
    </vdef>
    <format>
      <code proglang="perl">( value )? "" : " --anysymbol "</code>
      <code proglang="python">( "" , " --anysymbol ")[ value ]</code>
    </format>
    <comment>
    <div xmlns="http://www.w3.org/1999/xhtml">
      <p>If there are unusual characters (e.g., U as selenocysteine in protein sequence), use the --anysymbol option.</p>
      <p>It accepts any printable characters (U, O, #, $, %, etc.; 0x21-0x7e in the ASCII code), execpt for &gt; (0x3e).  
    They are scored equivalently to X.  Gap is - (0x2d), as in the default mode.</p>
    </div>
    </comment>
   </parameter>

      </parameters>
    </paragraph>
    
    <paragraph>
    <name>output_opt</name>
    <prompt>Output Options</prompt>
    <parameters>
    
    <parameter>
    <name>output_format</name>
    <prompt lang="en">Output format: </prompt>
    <type>
      <datatype>
        <class>Choice</class>
      </datatype>
    </type>
    <vdef>
      <value>FASTA</value>
    </vdef>
    <flist>
      <felem>
        <value>FASTA</value>
        <label>fasta</label>
          <code proglang="perl">''</code>
          <code proglang="python">''</code>
      </felem>
      <felem>
         <value>CLUSTAL</value>
         <label>clustal</label>
          <code proglang="perl">' --clustalout '</code>
          <code proglang="python">' --clustalout '</code>
      </felem>
      <felem>
        <value>PHYLIP</value>
        <label>phylip interleaved</label>
          <code proglang="perl">' --phylipout '</code>
          <code proglang="python">' --phylipout '</code>
      </felem>
    </flist>
    
   </parameter>
    
    <parameter>
    <name>out_order</name>
    <prompt lang="en">Output order: </prompt>
    <type>
      <datatype>
        <class>Choice</class>
      </datatype>
    </type>
    <vdef>
      <value>reorder</value>
    </vdef>
    <vlist>
      <velem>
        <value>inputorder</value>
        <label>Same as input</label>
      </velem>
      <velem>
        <value>reorder</value>
        <label>Aligned</label>
      </velem>
    </vlist>
    <format>
      <code proglang="perl">( value eq 'reorder')? " --reorder " : ""</code>
      <code proglang="python">( '' , ' --reorder ' )[ value == 'reorder' ]</code>
    </format>
   </parameter>
   
    </parameters>
    </paragraph>
    
    <paragraph>
    <name>advanced_settings </name>
    <prompt>Advanced settings </prompt>
    <parameters>
    
       <parameter ismandatory="1" iscommand="1">
    <name>strategy</name>
    <prompt lang="en">Strategy:</prompt>
    <type>
      <datatype>
        <class>Choice</class>
      </datatype>
    </type>
    <vdef>
      <value>auto</value>
    </vdef>
    <flist>
      <felem>
        <value>auto</value>
        <label>Auto (FFT-NS-2, FFT-NS-i or L-INS-i; depends on data size)</label>
        <code proglang="perl">"mafft --auto"</code>
        <code proglang="python">"mafft --auto"</code>
      </felem>
      <felem>
        <value>fftns1</value>
        <label>FFT-NS-1 (Very fast; recommended for >2,000 sequences; progressive method)</label>
        <code proglang="perl">"mafft-fftns --retree 1 "</code>
        <code proglang="python">"mafft-fftns --retree 1 "</code>
      </felem>
      <felem>
        <value>fftns2</value>
        <label>FFT-NS-2 (Fast; progressive method)</label>
        <code proglang="perl">"mafft-fftns "</code>
        <code proglang="python">"mafft-fftns "</code>
      </felem>
      <felem>
        <value>fftnsi2</value>
        <label>FFT-NS-i2 (Medium; iterative refinement method, two cycles only)</label>
        <code proglang="perl">"mafft-fftnsi "</code>
        <code proglang="python">"mafft-fftnsi "</code>
      </felem>
      <felem>
        <value>fftnsi1000</value>
        <label>FFT-NS-i (Slow; iterative refinement method)</label>
        <code proglang="perl">"mafft-fftnsi --maxiterate 1000 "</code>
        <code proglang="python">"mafft-fftnsi --maxiterate 1000 "</code>
      </felem>
      <felem>
        <value>einsi</value>
        <label>E-INS-i (Very slow; recommended for &lt;200 sequences with multiple conserved domains and long gaps)</label>
        <code proglang="perl">"mafft-einsi "</code>
        <code proglang="python">"mafft-einsi "</code>
      </felem>
      <felem>
        <value>linsi</value>
        <label>L-INS-i (Very slow; recommended for &lt;200 sequences with one conserved domain and long gaps)</label>
        <code proglang="perl">"mafft-linsi "</code>
        <code proglang="python">"mafft-linsi "</code>
      </felem>
      <felem>
        <value>ginsi</value>
        <label>G-INS-i (Very slow; recommended for &lt;200 sequences with global homology)</label>
        <code proglang="perl">"mafft-ginsi "</code>
        <code proglang="python">"mafft-ginsi "</code>
      </felem>
      <felem>
        <value>qinsi</value>
        <label>Q-INS-i (Extremely slow; recommended 
        for a global alignment of highly diverged ncRNAs with &lt;200 seq × &lt;1,000 nt)</label>
        <code proglang="perl">"mafft-qinsi "</code>
        <code proglang="python">"mafft-qinsi "</code>
      </felem>
    </flist>
    <comment>
      <div xmlns="http://www.w3.org/1999/xhtml">
      
      <h2>Algorithms and parameters (unfinished)</h2>
          MAFFT offers various multiple alignment strategies.
          They are classified into three types,
          (<b>a</b>) the progressive method,
          (<b>b</b>) the iterative refinement method with the WSP score, and
          (<b>c</b>) the iterative refinment method using both the WSP and consistency scores.
          In general,
          there is a tradeoff between speed and accuracy.
          The order of speed is
          <b>a</b> &gt; <b>b</b> &gt; <b>c</b>, whereas
          the order of accuracy is <b>a</b>
          &lt; <b>b</b> &lt; <b>c</b>.
          The results of benchmarks can be seen
          <a href="http://mafft.cbrc.jp/alignment/software/eval/accuracy.html">here</a>.
          The following are the detailed procedures for the major options of MAFFT.
          
          <h3 id="fftnsx">(a) FFT-NS-1, FFT-NS-2 — Progressive methods</h3>
          <img src="http://mafft.cbrc.jp/alignment/software/algorithms/prog.png" alt="prog.png" height="163" width="382" />
            <br />
              These are simple progressive methods like
              <a href="http://www.ebi.ac.uk/clustalw/">ClustalW</a>.
              By using the several new techniques described below,
              these options can align a large number of sequences
              (up to ∼5,000) on a standard desktop computer.
              The qualities of the resulting alignments are shown
              <a href="http://mafft.cbrc.jp/alignment/software/eval/accuracy.html">here</a>.
              The detailed algorithms are described in Katoh et al. (2002).
              <ul>
                <li>
                  <b>FFT-NS-1</b><br />
                    <b><tt>
                        mafft --retree 1
                        <i>input_file</i>
                        &gt;
                        <i>output_file</i>
                      </tt>
                    </b>
                    <br />
                      or
                      <br />
                        <b>
                          <tt>
                            fftns --retree 1
                            <i>input_file</i>
                            &gt;
                            <i>output_file</i>
                          </tt>
                        </b>
                        <br />
                          is the simplest progressive option in MAFFT
                          and one of the fastest methods currently available.
                          The procedure is:
                          (1) make a rough distance matrix by counting the number of
                          shared 6-tuples (see below) between every sequence pair,
                          (2) build a guide tree
                          and (3) align the sequences according to the branching order.
                          <p>
                          </p>
                </li>
                <li>
                  <b>FFT-NS-2</b> 
                  <br />
                    <b>
                      <tt>
                        mafft --retree 2
                        <i>input_file</i>
                        &gt;
                        <i>output_file</i>
                      </tt>
                    </b>
                    <br />
                      or
                      <br />
                        <b>
                          <tt>
                            fftns
                            <i>input_file</i>
                            &gt;
                            <i>output_file</i>
                          </tt>
                        </b>
                        <br />
                          The distance matrix used in FFT-NS-1 is very approximate
                          and unreliable.
                          In FFT-NS-2,
                          (4) the guide tree is re-computed from
                          the FFT-NS-1 alignment,
                          and (5) the second progressive alignment
                          is carried out.
                </li>
              </ul>
              The following techniques are used to improve the performance.
              <p>
                <span style="color: #003366; font-size: 100%; font-style: italic; font-weight: bold;"> FFT approximation.</span>
                (Not yet written) See Katoh et al. (2002).
              </p>
              <p>
                <span style="color: #003366; font-size: 100%; font-style: italic; font-weight: bold;">
                  <i>k</i>
                  -mer counting.
                </span>
                To accelerate the initial calculation of the distance matrix,
                which requires a CPU time of
                <i>O</i>
                (
                <i>N</i>
                <sup>2</sup>
                ) steps,
                a rough method similar to the 'quicktree' option of ClustalW
                is adopted,
                in which the number of
                <i>k</i>
                -mers shared by
                a pair of sequences
                is counted and regarded as an approximation
                of the degree of similarity.
                MAFFT uses the very rapid method proposed by Jones et al. (1992)
                with a minor modification
                (Katoh et al. 2002): (1) The 20 amino acids are compressed to 6
                alphabets, according to Dayhoff et al. (1978),
                and
                (2) MAFFT performs the second progressive alignment (FFT-NS-2) in order to
                improve the accuracy.
              </p>
              <p>
                <span style="color: #003366; font-size: 100%; font-style: italic; font-weight: bold;"> Modified UPGMA.</span> 
                <a href="upg.html">A modified version of UPGMA</a>
                is used to construct a guide tree,
                which works well for handling fragment sequences.
              </p>
              <p>
                <span style="color: #003366; font-size: 100%; font-style: italic; font-weight: bold;">The second progressive alignment.</span> 
                The accuracy of the second progressive alignment (FFT-NS-2)
                is slightly higher than that of the first progressive alignment (FFT-NS-1)
                according to the
                <a href="http://mafft.cbrc.jp/alignment/software/eval/accuracy.html">BAliBASE test</a>
                ,
                but the amount CPU time required by FFT-NS-2 is
                approximately two times longer than that by FFT-NS-1.
              </p>
        
              <h3>(b) FFT-NS-i, NW-NS-i — Iterative refinement method</h3>
              <img src="http://mafft.cbrc.jp/alignment/software/algorithms/iter.png" alt="iter.png" height="200" width="379" />
                <br />
                  The accuracy of progressive alignment
                  can be improved
                  by the iterative refinement method (Berger and Munson 1991, Gotoh 1993).
                  A simplified version of
                  <a href="">PRRN</a>
                  is implemented as the
                  FFT-NS-i option of MAFFT.
                  In FFT-NS-i,
                  an initial alignment by FFT-NS-2 is subjected to
                  an iterative refienment process.
                  <ul>
                    <li>
                      <b>FFT-NS-i (max. 1,000 cycles)</b>  
                      <br />
                        <b>
                          <tt>
                            mafft --maxiterate 1000
                            <i>input_file</i>
                            &gt;
                            <i>output_file</i>
                          </tt>
                        </b>
                        <br />
                          or
                          <br />
                            <b>
                              <tt>
                                fftnsi --maxiterate 1000
                                <i>input_file</i>
                                &gt;
                                <i>output_file</i>
                              </tt>
                            </b>
                            <br />
                              The iterative refinement is repeated until
                              no more improvement in the WSP score is made or the number of cycles reaches 1,000.
                              <p>
                              </p>
                    </li>
                    <li>
                      <b>FFT-NS-i (max. 2 cycles)</b>
                      <br />
                        <b>
                          <tt>
                            mafft --maxiterate 1000
                            <i>input_file</i>
                            &gt;
                            <i>output_file</i>
                          </tt>
                        </b>
                        <br />
                          or
                          <br />
                            <b>
                              <tt>
                                fftnsi
                                <i>input_file</i>
                                &gt;
                                <i>output_file</i>
                              </tt>
                            </b>
                            <br />
                              As most of the quality of improvement is obtained in the early
                              stage of the iteration, this option is also useful
                              (default of the fftnsi script).
                    </li>
                  </ul>
                  <p>
                    <span style="color: #003366; font-size: 100%; font-style: italic; font-weight: bold;">Objective function.</span> 
                    The weighted sum-of-pairs (WSP) score proposed by Gotoh is used.
                  </p>
                  <p>
                    <span style="color: #003366; font-size: 100%; font-style: italic; font-weight: bold;">Tree-dependent partitioning.</span> 
                    (Not yet written)
                    See Hirosawa et al.
                  </p>
                  <p>
                    <span style="color: #003366; font-size: 100%; font-style: italic; font-weight: bold;">Effect of FFT.</span> 
                    To test the effect of the FFT approximation,
                    we also implemented the NW-NS-x options,
                    in which the FFT approximation is disabled, but the other procedures are the same
                    as those in the corresponding FFT-NS-x.
                    There was no significant reduction in the accuracy
                    by introducing the FFT approximation
                    (Katoh et al. 2002).
                  </p>
        
                  <h3>(c) L-INS-i, E-INS-i, G-INS-i — Iterative refinement methods using WSP and consistency scores</h3>
                  <img src="http://mafft.cbrc.jp/alignment/software/algorithms/cons.png" alt="cons.png" height="134" width="366" />
                    <br />
                      In order to obtain more accurate alignments in extremely difficult cases,
                      three new options, L-INS-i, G-INS-i and E-INS-i, have been added to
                      recent versions (v.≥5) of MAFFT.
                      These options use
                      a new objective function combining the WSP score (Gotoh) explained above
                      and the COFFEE-like score (Notredame et al.),
                      which evaluates the consistency between
                      a multiple alignment and pairwise alignments (Katoh et al. 2005).
        
        
                      <p id="GLE">
                        For pairwise alignment,
                        three different types of algorithms are implemented,
                        global alignment (Needleman-Wunsch), local alignment (Smith-Waterman)
                        with affine gap costs (Gotoh) and
                        local alignment with generalized affine gap costs (Altschul).
                        The differences in the accuracy values among these methods are small
                        for the currently available benchmarks, as shown
                        <a href="http://mafft.cbrc.jp/alignment/software/eval/accuracy.html">here</a>
                        .
                        However,
                        each of them has different characteristics, according to the algorithm
                        in the pairwise alignment stage:
                      </p>
                      <ul>
                        <li id="einsi">
                          <b>E-INS-i</b>
                          <br />
                            <b>
                              <tt>
                                mafft --genafpair --maxiterate 1000
                                <i>input_file</i>
                                &gt;
                                <i>output_file</i>
                              </tt>
                            </b>
                            <br />
                              or
                              <br />
                                <b>
                                  <tt>
                                    einsi
                                    <i>input_file</i>
                                    &gt;
                                    <i>output_file</i>
                                  </tt>
                                </b>
                                <br />
                                  is suitable for alignments like this:
                                  <pre style="background-color: #F0F0F0; border: 0 solid #AAAAAA; font-size: 90%; font-weight: bold;">
 oooooooooXXX------XXXX---------------------------------XXXXXXXXXXX-XXXXXXXXXXXXXXXooooooooooooo
 ---------XXXXXXXXXXXXXooo------------------------------XXXXXXXXXXXXXXXXXX-XXXXXXXX-------------
 -----ooooXXXXXX---XXXXooooooooooo----------------------XXXXX----XXXXXXXXXXXXXXXXXXooooooooooooo
 ---------XXXXX----XXXXoooooooooooooooooooooooooooooooooXXXXX-XXXXXXXXXXXX--XXXXXXX-------------
 ---------XXXXX----XXXX---------------------------------XXXXX---XXXXXXXXXX--XXXXXXXooooo--------
                                  </pre>
                                  where '
                                  <tt>X</tt>
                                  's indicate alignable residues,
                                  '
                                  <tt>o</tt>
                                  's indicate unalignable residues and
                                  '
                                  <tt>-</tt>
                                  's indicate gaps.
                                  Unalignable residues are left
                                  unaligned
                                  at the pairwise alignment stage,
                                  because of the use of the generalized affine gap cost.
                                  Therefore E-INS-i is applicable to a difficult problem such as RNA polymerase, which
                                  has several conserved motifs embedded in long unalignable regions.
                                  As E-INS-i has the minimum assumption of the three methods,
                                  this is recommended if the nature of sequences to be aligned is not clear.
                                  Note that E-INS-i assumes that the arrangement of the conserved motifs is shared by
                                  all sequences.
        
                        </li>
                        <li id="linsi">
                          
                            <b>L-INS-i</b>
                            <br />
                              <b>
                                <tt>
                                  mafft --localpair --maxiterate 1000
                                  <i>input_file</i>
                                  &gt;
                                  <i>output_file</i>
                                </tt>
                              </b>
                              <br />
                                or
                                <br />
                                  <b>
                                    <tt>
                                      linsi
                                      <i>input_file</i>
                                      &gt;
                                      <i>output_file</i>
                                    </tt>
                                  </b>
                                  <br />
                                    is suitable to:
                          
                          <pre style="background-color: #F0F0F0; border: 0 solid #AAAAAA; font-size: 90%; font-weight: bold;">
 ooooooooooooooooooooooooooooooooXXXXXXXXXXX-XXXXXXXXXXXXXXX------------------
 --------------------------------XX-XXXXXXXXXXXXXXX-XXXXXXXXooooooooooo-------
 ------------------ooooooooooooooXXXXX----XXXXXXXX---XXXXXXXooooooooooo-------
 --------ooooooooooooooooooooooooXXXXX-XXXXXXXXXX----XXXXXXXoooooooooooooooooo
 --------------------------------XXXXXXXXXXXXXXXX----XXXXXXX------------------
                          </pre>
                          L-INS-i can align
                          a set of sequences containing sequences flanking
                          around one alignable domain.
                          Flanking sequences are ignored in the pairwise alignment
                          by the Smith-Waterman algorithm.
                          Note that the input sequences are assumed to have
                          only one alignable domain.
                          In benchmark tests, the ref4 of BAliBASE corresponds to this.
                          The other categories of BAliBASE also correspond to similar situations,
                          because they have flanking sequences.
                          L-INS-i also shows higher accuracy values for a part of SABmark and HOMSTRAD
                          than G-INS-i, but we have not identified the reason for this.
        
                        </li>
                        <li id="ginsi">
                            <b>G-INS-i</b>
                            <br />
                              <b>
                                <tt>
                                  mafft --globalpair --maxiterate 1000
                                  <i>input_file</i>
                                  &gt;
                                  <i>output_file</i>
                                </tt>
                              </b>
                              <br />
                                or
                                <br />
                                  <b>
                                    <tt>
                                      ginsi
                                      <i>input_file</i>
                                      &gt;
                                      <i>output_file</i>
                                    </tt>
                                  </b>
                                  <br />
                                    is suitable to:
                          <pre style="background-color: #F0F0F0; border: 0 solid #AAAAAA; font-size: 90%; font-weight: bold;">
 XXXXXXXXXXX-XXXXXXXXXXXXXXX
 XX-XXXXXXXXXXXXXXX-XXXXXXXX
 XXXXX----XXXXXXXX---XXXXXXX
 XXXXX-XXXXXXXXXX----XXXXXXX
 XXXXXXXXXXXXXXXX----XXXXXXX
                          </pre>
                          G-INS-i assumes that entire region can be aligned
                          and tries to align them globally using
                          the Needleman-Wunsch algorithm;
                          that is,
                          a set of sequences of one domain
                          must be extracted by truncating flanking
                          sequences.
                          In benchmark tests, SABmark and HOMSTRAD correspond to this.
                        </li>
                      </ul>
        
                      <p>
                        <span style="color: #003366; font-size: 100%; font-style: italic; font-weight: bold;">Consistency score.</span> 
                        The COFFEE objective function was originally proposed
                        by Notredame et al. (1998), and
                        the extended versions are used in TCoffee and ProbCons.
                        MAFFT also adopts a similar objective function, as described
                        in Katoh et al. (2005).
                        However,
                        the consistency among three sequences
                        (called 'library extension' in TCoffee)
                        is currently not calculated in MAFFT,
                        because the improvement in accuracy by library extension was limited to
                        alignments consisting of a small number (&lt;10) of sequences
                        in our preliminary tests.
                        If library extention is needed, then please use
                        <a href="http://igs-server.cnrs-mrs.fr/%7Ecnotred/Projects_home_page/t_coffee_home_page.html">TCoffee</a>
                        or
                        <a href="http://probcons.stanford.edu/">ProbCons</a>.
                      </p>
                      <p>
                        <span style="color: #003366; font-size: 100%; font-style: italic; font-weight: bold;">Consistency + WSP.</span> 
                        Instead,
                        the WSP score is summed with the consistency score in the
                        objective function of MAFFT.
                        The use of the WSP score
                        has the merit that a pattern of gaps can be incorporated
                        into the objective function.
                        This is probably the reason why
                        MAFFT achieves higher accuracy than
                        ProbCons and TCoffee for alignments consisting of
                        many (∼10 - ∼100) sequences.
                        This suggests that
                        the pattern of gaps within a group
                        to be aligned
                        is important information
                        when aligning two groups of proteins (and evaluating
                        homology between distantly related protein families).
                      </p>
      
      </div>
    </comment>
    <argpos>0</argpos>
    </parameter>
    
    <parameter>
    <name>amino_scm</name>
    <prompt lang="en">Scoring matrix for amino acid sequences:</prompt>
    <type>
      <datatype>
        <class>Choice</class>
      </datatype>
    </type>
    <vdef>
      <value>BLOSUM62</value>
    </vdef>
    <flist>
      <felem>
        <value>BLOSUM30</value>
        <label>BLOSUM30</label>
        <code proglang="perl">" --bl 30 "</code>
        <code proglang="python">" --bl 30 "</code>
      </felem>
      <felem>
        <value>BLOSUM45</value>
        <label>BLOSUM45</label>
        <code proglang="perl">" --bl 45 "</code>
        <code proglang="python">" --bl 45 "</code>
      </felem>
      <felem>
        <value>BLOSUM62</value>
        <label>BLOSUM62</label>
        <code proglang="perl">""</code>
        <code proglang="python">""</code>
      </felem>
      <felem>
        <value>BLOSUM80</value>
        <label>BLOSUM80</label>
        <code proglang="perl">" --bl 80 "</code>
        <code proglang="python">" --bl 80 "</code>
      </felem>
      <felem>
        <value>JT100</value>
        <label>JT100</label>
        <code proglang="perl">" --jtt 100 "</code>
        <code proglang="python">" --jtt 100 "</code>
      </felem>
      <felem>
        <value>JT200</value>
        <label>JT200</label>
        <code proglang="perl">" --jtt 200 "</code>
        <code proglang="python">" --jtt 200 "</code>
      </felem>
    </flist>
    <comment>
      <text lang="en">The BLOSUM62 matrix is adopted as a default scoring matrix, 
      because this showed slightly higher accuracy values than the 
      BLOSUM80, 45, JTT200PAM, 100PAM and Gonnet matrices in SABmark tests. </text>
    </comment>
   </parameter>
   
   <parameter>
    <name>nuc_scm</name>
    <prompt lang="en">Scoring matrix for nucleotide sequences:</prompt>
    <type>
      <datatype>
        <class>Choice</class>
      </datatype>
    </type>
    <vdef>
      <value>200</value>
    </vdef>
    <vlist>
      <velem undef="1">
        <value>200</value>
        <label>200PAM/ k=2</label>
      </velem>
      <velem>
        <value>20</value>
        <label>20PAM/ k=2</label>
      </velem>
      <velem>
        <value>1</value>
        <label>1PAM/ k=2</label>
      </velem>
    </vlist>
    <format>
        <code proglang="perl">( defined $value and $value ne $vdef )" --kimura $value " : ""</code>
        <code proglang="python">( "" , " --kimura "+str( value ) )[ value is not None and value!= vdef ]</code>
    </format>
    <comment>
     <div xmlns="http://www.w3.org/1999/xhtml">
      <p style="color: red">Switch it to '1PAM / κ=2' when aligning closely related DNA sequences.</p>
      <p>The default scoring matrix is derived from Kimura's two-parameter model. 
      The ratio of transitions to transversions is set at 2 by default. 
      Other parameters can be used, but have not yet been tested. </p>
      </div>
    </comment>  
   </parameter>

     <parameter>
    <name>gap_open_penalty</name>
    <prompt lang="en">Gap opening penalty (1.0 - 3.0): </prompt>
    <type>
      <datatype>
        <class>Float</class>
      </datatype> 
    </type>
    <vdef>
      <value>1.53</value>
    </vdef>
    <format>
      <code proglang="perl">(defined $value and $value != $vdef)? " --op $value " : ""</code>
      <code proglang="python">( "" , " --op "+str( value ) )[ value is not None and value != vdef ]</code>
    </format>
    <ctrl>
      <message>
        <text lang="en">You must provide a value between 1.0 &lt; value &lt; 3.0</text>
      </message>
      <code proglang="">1.0 &lt; $value &lt; 3.0</code>
      <code proglang="">1.0 &lt; value &lt; 3.0</code>
    </ctrl>
    <comment>
      <div xmlns="http://www.w3.org/1999/xhtml">
      <p>
        <span style="color: #003366; font-size: 100%; font-style: italic; font-weight: bold;">
          Gap penalties for proteins.</span>
        The default gap penalties for amino acid alignments
        have been changed in
        <span style="color: red">v.4.0</span>.
        Note that the current version of MAFFT returns
        an entirely different alignment from v.&lt;4.0.
        In v.4.0, two major gap penalties
        (--op [gap open penalty]
        and --ep [offset value, which functions like a gap extension penalty,
        see the
        <a href="http://mafft.cbrc.jp/alignment/software/algorithms/algorithms.html">mafft3 paper</a>
        for definition])
        were tuned by applying the FFT-NS-2 option to a part of
        the SABmark benchmark.
        We adopted the parameter set (--op 1.53 --ep 0.123) optimized for
        SABmark,
        because this works better for other benchmark
        (HOMSTRAD, PREFAB and BAliBASE)
        tests than
        the previous one (--ep 2.4 --ep 0.06).
        Other parameters might work better in other situations.
        Consistency-based options have more parameters
        (L-INS-i has four more parameters and E-INS-i has six more parameters).
        We determined these additional parameters so that the Smith-Waterman alignment function
        used in L-INS-i
        returns a local alignment similar to that generated by FASTA,
        but we have not closely tuned them yet.
        In our tests using SABmark,
        the accuracy values can be improved by 2-3% by
        tuning these parameters,
        but this improvement may result from overfitting.
      
      </p>
        <p>
          <span style="color: #003366; font-size: 100%; font-style: italic; font-weight: bold;">Gap penalties for RNAs.</span>
          The default gap penalties for nucleotide alignment
          have changed in
          <span class="red">
            v.5.6</span>.
          Note that the current version of MAFFT returns
          an entirely different alignment from v.&lt;5.6.
          In the former versions (v.&lt;5.6),
          the default gap penalties for nucleotide alignments were set at the same values
          as those for amino acid alignments.
          According to
          <a href="http://projects.binf.ku.dk/pgardner/bralibase/">BRAliBASE</a>
          ,
          these penalties result in
          very bad alignments for RNAs.
          The newer versions (v.≥5.6) use a different penalties for nucleotide alignment;
          the penalty values are set to three times larger than those for amino acids.
          This is not yet the optimal value for BRAliBASE.
          The BRAliBASE score can be improved by
          closely tuning the penalty values, but we have not adopted the
          optimized penalties, because we are not sure whether they are
          applicable to a wide range of problems.
        </p>
      </div>
    </comment> 
   </parameter>
    
       <parameter>
    <name>offset</name>
    <prompt lang="en">Offset value (0.0 - 1.0):</prompt>
    <type>
      <datatype>
        <class>Float</class>
      </datatype>
    </type>
    <vdef>
      <value>0.0</value>
    </vdef>
    <format>
      <code proglang="perl">(defined $value and $value != $vdef)? " --ep $value " : ""</code>
      <code proglang="python">( "" , " --ep "+str( value ) )[ value is not None and value != 0.123 ]</code>
    </format>
    <ctrl>
      <message>
        <text lang="en">You must provide a value between 0.0 &lt; value &lt; 1.0 (default 0.123)</text>
      </message>
      <code proglang="">0.0 &lt; $value &lt; 1.0</code>
      <code proglang="">0.0 &lt; value &lt; 1.0</code>
    </ctrl>
    <comment>
      <div xmlns="http://www.w3.org/1999/xhtml">
        <p style="color: red">If long gaps are not expected, set it as 0.1 or larger value.</p>
      </div>
    </comment>
   </parameter>
   
    </parameters>
    </paragraph>
    
    <parameter isstdout="1">
      <name>result</name>
      <prompt lang="en">Alignment file</prompt>
      <type>
        <datatype>
          <class>Alignment</class>
        </datatype>
        <dataFormat>
          <ref param="output_format"/>
        </dataFormat>
      </type>
      <filenames>
        <code proglang="perl">"mafft.out"</code>
        <code proglang="python">"mafft.out"</code>
      </filenames>
    </parameter>
 
  </parameters>
</program>