This file is indexed.

/var/lib/mobyle/programs/msaprobs.xml is in mobyle-programs 5.1.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
<?xml version='1.0' encoding='UTF-8'?>
<!-- XML Authors: Corinne Maufrais, Nicolas Joly and Bertrand Neron, -->
<!-- 'Biological Software and Databases' Group, Institut Pasteur, Paris. -->
<!-- Distributed under LGPLv2 License. Please refer to the COPYING.LIB document. -->
<program>
  <head>
    <name>msaprobs</name>
    <version>0.9.4</version>
    <doc>
      <title>MSAProbs</title>
      <description>
        <text lang="en">is a protein multiple sequence alignment algorithm based on pair hidden Markov models and partition function posterior probabilities</text>
      </description>
      <authors>Yongchao Liu, Bertil Schmidt and Douglas L. Maskell</authors>
      <reference doi="doi:10.1093/bioinformatics/btq338">
          Yongchao Liu, Bertil Schmidt and Douglas L. Maskell (Bioinformatics 2010 26(16): 1958-1964)
         MSAProbs: multiple sequence alignment based on pair hidden Markov models and 
         partition function posterior probabilities.
      </reference>
      <sourcelink>http://sourceforge.net/projects/msaprobs/files/MSAProbs-0.9.4.tar.gz/download</sourcelink>
      <homepagelink>http://sourceforge.net/projects/msaprobs/</homepagelink>
      <comment>
        <div xmlns="http://www.w3.org/1999/xhtml">
          <p>MSAProbs is an open-source protein multiple sequence ailgnment algorithm, 
           achieving the stastistically highest alignment accuracy on popular benchmarks: 
          <a href="http://www-bio3d-igbmc.u-strasbg.fr/balibase/">BALIBASE</a>,  
          <a href="http://www.drive5.com/muscle/prefab.htm">PREFAB</a>, 
          <a href="http://bioinformatics.vub.ac.be/databases/databases.html">SABMARK</a>,  
          <a href="http://www.compbio.dundee.ac.uk/Software/Oxbench/oxbench.html">OXBENCH</a>,  
           compared to ClustalW, MAFFT, MUSCLE, ProbCons and Probalign.</p>
        </div>
      </comment>
    </doc>
    <category>alignment:multiple</category>
    <command>msaprobs</command>
  </head>
  
  <parameters>
        <parameter ismandatory="1" issimple="1">
          <name>sequences</name>
          <prompt lang="en">Sequences File ( a file containing several sequences ).</prompt>
          <type>
            <biotype>Protein</biotype>
            <datatype>
              <class>Sequence</class>
            </datatype>
            <dataFormat>FASTA</dataFormat>
          </type>
          <format>
            <code proglang="perl">" $sequences"</code>
            <code proglang="python">" " + str( sequences )</code>
          </format>
          <argpos>1000</argpos>
        </parameter>
        
        <paragraph>
      <name>accuracy</name>
      <prompt lang="en">Accuracy Options</prompt>
      <parameters>
        <parameter>
          <name>consitency</name>
          <prompt lang="en">passes of consistency transformation( 0 &gt;= REPS &gt;= 5 default: 2 )</prompt>
          <type>
            <datatype>
              <class>Integer</class>
            </datatype>
          </type>
          <vdef>
            <value>2</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef)" -c $value " : ""</code>
            <code proglang="python">("" , " -c "+str(value))[ value is not None and value != vdef ]</code>
          </format>
          <ctrl>
            <message>
              <text lang="en">use 0 &gt;= REPS &gt;= 5</text>
            </message>
              <code proglang="perl">$value &gt;=0 and $value&lt;=5</code>
              <code proglang="python">value &gt;=0 and value&lt;=5</code>
          </ctrl>
          <comment>
            <text lang="en">A probabilistic consistency transformation is used to re-estimate more
              accurate posterior probabilities of each sequence pair x and y by introducing
              another sequence z. Instead of re-computing the posterior probabilities
              based on three-sequence alignments, the transformation is performed
              based on the already computed probability matrices estimated from
              pairwise alignments. 
              To avoid a biased sampling of sequences, we therefore derive a weighed 
              probabilistic consistency transformation approach
              This motivation of the weighted approach is to obtain more accurate
              alignments than the non-weighted one. The transformations are further
              performed for a fixed number of iterations to refine the probabilities. In
              MSAProbs, two iterations (the default value) are used. This default value
              offers a good trade-off between alignment accuracy and execution time.</text>
          </comment>
        </parameter>
        
        <parameter>
          <name>iterative_refinement</name>
          <prompt lang="en">passes of iterative-refinement ( use 0 &gt;= REPS &gt;= 1000 default: 10 )</prompt>
          <type>
            <datatype>
              <class>Integer</class>
            </datatype>
          </type>
          <vdef>
            <value>10</value>
          </vdef>
          <format>
            <code proglang="perl">(defined $value and $value != $vdef)" -ir $value " : ""</code>
            <code proglang="python">("" , " -ir "+str(value))[ value is not None and value != vdef ]</code>
          </format>
          <ctrl>
            <message>
              <text lang="en">use 0 &gt;= REPS &gt;= 1000</text>
            </message>
              <code proglang="perl">$value &gt;=0 and $value&lt;=100</code>
              <code proglang="python">value &gt;=0 and value&lt;=100</code>
          </ctrl>
          <comment>
            <text lang="en">
              As a post-processing step, a randomized iterative alignment is employed
              to further improve alignment accuracy. This refinement randomly partitions
              S into two non-overlapped subsets, and then performs a profile–profile
              alignment of the two subsets. MSAProbs designs its own pseudo random
              number generator based on the linear congruential method for the random
              partition of S. The iterative refinement is designed to complete after a fixed
              number of iterations (10 iterations, by default).
            </text>
          </comment>
        </parameter>
    </parameters>
    </paragraph>
        
    <paragraph>
      <name>output_opt</name>
      <prompt lang="en">Output Options</prompt>
      <parameters>
      
        <parameter>
          <name>annotation</name>
          <prompt lang="en">write annotation for multiple alignment to FILENAME</prompt>
          <type>
            <datatype>
              <class>Filename</class>
            </datatype>
          </type>
          <format>
            <code proglang="perl">(defined $value)" -annot $value " : ""</code>
            <code proglang="python">("" , " -annot " + str(value))[ value is not None ]</code>
          </format>
          <comment>
              <text lang="en">The score of each column of the final alignment, from the leftmost to the right most, will be report on this annotation file.</text>
         </comment>
        </parameter>
        
      </parameters>
    </paragraph>
    
    <parameter isstdout="1">
      <name>alignment</name>
      <prompt lang="en">Alignment file</prompt>
      <type>
        <biotype>Protein</biotype>
        <datatype>
          <class>Alignment</class>
        </datatype>
        <dataFormat>FASTA</dataFormat>
      </type>
      <filenames>
        <code proglang="perl">"msaprobs.out"</code>
        <code proglang="python">"msaprobs.out"</code>
      </filenames>
    </parameter>    
 
    <parameter isout="1">
      <name>annotation_file</name>
      <prompt lang="en">Annotation file</prompt>
      <precond>
        <code proglang="perl">defined $annotation</code>
        <code proglang="python">annotation is not None</code>
      </precond>
      <type>
        <datatype>
          <class>MSAProbsAnnotation</class>
          <superclass>Report</superclass>
        </datatype>
      </type>
      <filenames>
        <code proglang="perl">$annotation</code>
        <code proglang="python">annotation</code>
      </filenames>
      <comment>
        <text lang="en">Each line represents the score of each column of the final alignment from the leftmost to the right most.</text>
      </comment>
    </parameter> 
         
  </parameters>
</program>