/var/lib/mobyle/programs/netOglyc.xml is in mobyle-programs 5.1.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 | <?xml version='1.0' encoding='UTF-8'?>
<!-- XML Authors: Corinne Maufrais, Nicolas Joly and Bertrand Neron, -->
<!-- 'Biological Software and Databases' Group, Institut Pasteur, Paris. -->
<!-- Distributed under LGPLv2 License. Please refer to the COPYING.LIB document. -->
<program>
<head>
<name>netOglyc</name>
<version>3.1</version>
<xi:include xmlns:xi="http://www.w3.org/2001/XInclude" href="Entities/cbs_package.xml"/>
<doc>
<title>netOglyc</title>
<description>
<text lang="en">predict O-glycosylation sites in proteins.</text>
</description>
<sourcelink>http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?netNglyc</sourcelink>
<authors> Karin Julenius, kj@cbs.dtu.dk</authors>
<reference>Prediction, conservation analysis and structural characterization of
mammalian mucin-type O-glycosylation sites.
K. Julenius, A. Moelgaard, R. Gupta and S. Brunak.
Glycobiology, 15:153-164, 2005.
</reference>
<doclink>http://www.cbs.dtu.dk/services/NetOGlyc/</doclink>
<doclink>http://www.cbs.dtu.dk/databases/OGLYCBASE/</doclink>
<comment>
<text lang="en">The NetOglyc server produces neural network predictions of mucin type GalNAc O-glycosylation sites in mammalian proteins.</text>
</comment>
</doc>
<category>sequence:protein:motifs</category>
<category>sequence:protein:pattern</category>
<category>sequence:protein:profiles</category>
</head>
<parameters>
<parameter ishidden="1" iscommand="1">
<name>netoglyc</name>
<type>
<datatype>
<class>String</class>
</datatype>
</type>
<format>
<code proglang="perl">" netOglyc "</code>
<code proglang="python">" netOglyc "</code>
</format>
</parameter>
<parameter ismandatory="1" issimple="1" ismaininput="1">
<name>sequence</name>
<prompt lang="en">Input Sequence</prompt>
<type>
<datatype>
<class>Sequence</class>
</datatype>
<dataFormat>FASTA</dataFormat>
</type>
<format>
<code proglang="python">" " + str( value )</code>
</format>
<argpos>50</argpos>
<example>
>LEUK_RAT P13838 LEUKOSIALIN PRECURSOR (LEUCOCYTE SIALOGLYCOPROTEIN) (SIALOPHORIN) (CD43) (W3/13 ANTIGEN).
WAQVVSQENLPNTMTMLPFTPNSESPSTSEALSTYSSIATVPVTEDPKESISPWGQTTAP
ASSIPLGTPELSSFFFTSAGASGNTPVPELTTSQEVSTEASLVLFPKSSGVASDPPVTIT
NPATSSAVASTSLETFKGTSAPPVTVTSSTMTSGPFVATTVSSETSGPPVTMATGSLGPS
KETHGLSATIATSSGESSSVAGGTPVFSTKISTTSTPNPITTVPPRPGSSGMLLVSMLIA
LTVVLVLVALLLLWRQRQKRRTGALTLSRGGKRNGTVDAWAGPARVPDEEATTASGSGGN
KSSGAPETDGSGQRPTLTTFFSRRKSRQGSVALEELKPGTGPNLKGEEEPLVGSEDEAVE
TPTSDGPQAKDGAAPQSL
</example>
</parameter>
<parameter>
<name>signal_peptide</name>
<prompt lang="en">Run signalp on the input sequences (-sp).</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">( $value ) ? "-sp ": ""</code>
<code proglang="python">( "","-sp ")[ bool( value ) ]</code>
</format>
<argpos>10</argpos>
<comment>
<text lang="en"> Non-secretory proteins are unlikely to be glycosylated in vivo even though they contain potential motifs.
Therefore, it is possible to run the signal peptide predictor signalp on the input sequences</text>
</comment>
</parameter>
<parameter >
<name>graphics</name>
<prompt lang="en">generate graphics (-g).</prompt>
<type>
<datatype>
<class>Boolean</class>
</datatype>
</type>
<vdef>
<value>0</value>
</vdef>
<format>
<code proglang="perl">( $value )? "-g " : ""</code>
<code proglang="python">( "" , "-g " )[ bool( value ) ]</code>
</format>
<comment>
<text lang="en"> Generate graphics, plotting the G-score against the position in the sequence
of each serine and threonine residue. The I-score is plotted instead for the
residues where it decides the final answer. For each input sequence two
files will be produced ``<seqname>.ps''
(in PostScript) and ``<seqname>.gif'' (in GIF).</text>
</comment>
<argpos>20</argpos>
</parameter>
<parameter isstdout="1">
<name>results</name>
<prompt lang="en">netOglyc report</prompt>
<type>
<datatype>
<superclass>Report</superclass>
<class>NetOGlyc</class>
</datatype>
</type>
<filenames>
<code proglang="perl">"netOglyc.out"</code>
<code proglang="python">"netOglyc.out"</code>
</filenames>
<comment>
<div xmlns="http://www.w3.org/1999/xhtml">
<p> Each input sequence is displayed with the predicted sites
indicated, labelled with ``S'' and ``T'' for serine and threonine, respectively. The signal peptide (if
predicted) is labelled with ``_''. The details of the prediction for each serine and threonine residue are
then shown in a table. The columns are:</p>
<ul>
<li>sequence name</li>
<li>residue (S or T)</li>
<li>position in the sequence</li>
<li>G-score (general predictor)</li>
<li>I-score (isolated site predictor)</li>
<li>final answer (S/T for predicted sites, otherwise `.')</li>
<li>comment</li>
</ul>
<p>The final answer is calculated as follows. If the G-score is >0.5 the residue is predicted as glycosy‐
lated; the higher the score the more confident the prediction. If the G-score is < 0.5 but the I-score >0.5
and there are no predicted neighbouring sites (distance <10 residues) the residue is also predicted as gly‐
cosylated.</p>
<p>If a residue in a predicted signal peptide is predicted as glycosylated there is a warning in the comment
field.
</p>
</div>
</comment>
</parameter>
<parameter isout="1">
<name>postscript</name>
<prompt lang="en">graphic in Postsricpt</prompt>
<type>
<datatype>
<superclass>Binary</superclass>
<class>NetOGlyc_graphic</class>
</datatype>
<dataFormat>PostScript</dataFormat>
</type>
<precond>
<code proglang="perl">graphics</code>
<code proglang="python">graphics</code>
</precond>
<filenames>
<code proglang="perl">"*.ps"</code>
<code proglang="python">"*.ps"</code>
</filenames>
<comment>
<text lang="en"> plotting the G-score against the position in the sequence of each serine and
threonine residue. The I-score is plotted instead for the residues where it decides the final
answer.
</text>
</comment>
</parameter>
<parameter isout="1">
<name>gif</name>
<prompt lang="en">graphic in GIF</prompt>
<type>
<datatype>
<superclass>Binary</superclass>
<class>NetOGlyc_graphic</class>
</datatype>
<dataFormat>GIF</dataFormat>
</type>
<precond>
<code proglang="perl">graphics</code>
<code proglang="python">graphics</code>
</precond>
<filenames>
<code proglang="perl">"*.gif"</code>
<code proglang="python">"*.gif"</code>
</filenames>
<comment>
<text lang="en"> plotting the G-score against the position in the sequence of each serine and
threonine residue. The I-score is plotted instead for the residues where it decides the final
answer.
</text>
</comment>
</parameter>
</parameters>
</program>
|