This file is indexed.

/var/lib/mobyle/programs/tmhmm.xml is in mobyle-programs 5.1.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
<?xml version='1.0' encoding='UTF-8'?>
<!-- XML Authors: Corinne Maufrais, Nicolas Joly and Bertrand Neron,             -->
<!-- 'Biological Software and Databases' Group, Institut Pasteur, Paris.         -->
<!-- Distributed under LGPLv2 License. Please refer to the COPYING.LIB document. -->
<program>
  <head>
    <name>tmhmm</name>
    <version>2.0C</version>
    <xi:include xmlns:xi="http://www.w3.org/2001/XInclude" href="Entities/cbs_package.xml"/>
    <doc>
      <title>tmhmm</title>
      <description>
        <text lang="en">prediction of transmembrane helices in proteins.</text>
      </description>
      <sourcelink>http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?tmhmm</sourcelink>
      <reference>
      </reference>
      <reference>
      </reference>
      <doclink>http://www.cbs.dtu.dk/services/TMHMM//</doclink>
    </doc>
    <category>sequence:protein:2D_structure</category>
    <category>structure:2D_structure</category>
  </head>
  <parameters>
     
    <parameter ishidden="1" iscommand="1">
      <name>tmhmm</name>
      <type>
        <datatype>
          <class>String</class>
        </datatype>
      </type>
      <format>
        <code proglang="perl">"tmhmm "</code>
        <code proglang="python">"tmhmm "</code>
      </format>
    </parameter>
   
    <parameter ismandatory="1" issimple="1" ismaininput="1">
      <name>sequence</name>
      <prompt lang="en">Input Sequence</prompt>
      <type>
        <datatype>
          <class>Sequence</class>
        </datatype>
        <dataFormat>FASTA</dataFormat>
      </type>
      <format>
        <code proglang="perl">" $value "</code>
        <code proglang="python">" " + str( value )</code>
      </format>
      <argpos>50</argpos>
    </parameter>
    
    <parameter >
      <name>output_opt</name>
      <prompt lang="en">output options</prompt>
      <type>
        <datatype>
          <class>Choice</class>
        </datatype>
      </type>
      <vdef>
        <value>0</value>
      </vdef>
      <flist>
        <felem>
          <value>0</value>
          <label>Extensive, with graphics</label>
          <code proglang="perl">" -noshort "</code>
          <code proglang="python">" -noshort "</code>
        </felem>
        <felem>
          <value>1</value>
          <label>Extensive, no graphics</label>
          <code proglang="perl">" -noplot "</code>
          <code proglang="python">" -noplot "</code>
        </felem>
        <felem>
          <value>2</value>
          <label>One line per protein, no graphics</label>
          <code proglang="perl">" -short "</code>
          <code proglang="python">" -short "</code>
        </felem>
      </flist>
      <argpos>10</argpos>
    </parameter>  
    
        <parameter>
      <name>v1</name>
      <prompt lang="en">Use old model (version 1).</prompt>
      <type>
        <datatype>
          <class>Boolean</class>
        </datatype>
      </type>
      <vdef>
        <value>0</value>
      </vdef>
      <format>
        <code proglang="perl">($value)? " -v1 ": ""</code>
        <code proglang="python">( ""," -v1 ")[ bool( value ) ]</code>
      </format>
      <argpos>20</argpos>
    </parameter>
    
    <parameter isstdout="1">
      <name>results</name>
      <prompt lang="en">tmhmm report.</prompt>
      <type>
        <datatype>
          <superclass>Report</superclass>
          <class>tmhmm</class>
        </datatype>
      </type>
      <filenames>
        <code proglang="perl">"tmhmm.out"</code>
        <code proglang="python">"tmhmm.out"</code>
      </filenames>
      <comment>
      <div xmlns="http://www.w3.org/1999/xhtml">
        <p><strong>Long output format</strong></p>
        <p>The first few lines gives some statistics:</p>
        <ul>
          <li>Length: the length of the protein sequence.</li>
          <li>Number of predicted TMHs: The number of predicted transmembrane helices.</li>
          <li>Exp number of AAs in TMHs: The expected number of amino acids intransmembrane
              helices. If this number is larger than 18 it is very likely to be a transmembrane
              protein (OR have a signal peptide).</li>
          <li>Exp number, first 60 AAs: The expected number of amino acids in transmembrane
              helices in the first 60 amino acids of the protein. If this number more
              than a few, you should be warned that a predicted transmembrane helix in
              the N-term could be a signal peptide.</li>
          <li>Total prob of N-in: The total probability that the N-term is on the cytoplasmic
              side of the membrane.</li>
          <li>POSSIBLE N-term signal sequence: a warning that is produced when "Exp number,
              first 60 AAs" is larger than 10.</li>
        </ul>
        <p><strong>Short output format</strong></p>
        <p>In the short output format one line is produced for each protein with no
           graphics. Each line starts with the sequence identifier and then these
           fields:</p>
       <ul>
         <li>"len=": the length of the protein sequence.</li>
         <li>"ExpAA=": The expected number of amino acids intransmembrane helices (see
             above).</li>
         <li><tt>"First60="</tt>: The expected number of amino acids in transmembrane
             helices in the first 60 amino acids of the protein (see above).</li>
         <li><tt>"PredHel=": </tt>The number of predicted transmembrane helices by N-best.</li>
         <li>"Topology=": The topology predicted by N-best.</li>
      </ul>
      <p>For the example above the short output would be (except that it would be
         on one line):</p>
      <p>
        <tt>COX2_BACSU</tt><br />
        <tt>len=278</tt><br />
        <tt>ExpAA=68.69</tt><br />
        <tt>First60=39.89</tt><br />
        <tt>PredHel=3</tt><br />
        <tt>Topology=i7-29o44-66i87-109o</tt>
     </p>
     <p>The topology is given as the position of the transmembrane helices separated
        by 'i' if the loop is on the inside or 'o' if it is on the outside. The
        above example '<tt>i7-29o44-66i87-109o' means that it starts on the inside,
        has a predicted TMH at position 7 to 29, the outside, then a TMH at position
        44-66 etc.</tt>
    </p>
  </div>
 </comment>
    </parameter> 

    <parameter isout="1">
      <name>eps</name>
      <prompt lang="en">Plot of probabilities</prompt>
      <type>
        <datatype>
          <superclass>Binary</superclass>
          <class>tmhmm_graphic</class>
        </datatype>
        <dataFormat>EPS</dataFormat>
      </type>
      <precond>
        <code proglang="perl">output_opt == "0"</code>
        <code proglang="python">output_opt == "0"</code>
      </precond>
      <filenames>
        <code proglang="perl">"*.eps"</code>
        <code proglang="python">"*.eps"</code>
      </filenames>
      <comment>
        <div xmlns="http://www.w3.org/1999/xhtml">
        <p>The plot shows the posterior probabilities
           of inside/outside/TM helix. Here one can see possible weak TM helices that
           were not predicted, and one can get an idea of the certainty of each
           segment in the prediction.</p>
        <p>At the top of the plot (between 1 and 1.2) the N-best prediction is shown.</p>
        <p>The plot is obtained by calculating the total probability that a
           residue sits in helix, inside, or outside summed over all possible
           paths through the model. Sometimes it seems like the plot and the
           prediction are contradictory, but that is because the plot shows probabilities
           for each residue, whereas the prediction is the over-all most probable
           structure. Therefore the plot should be seen as a complementary source
           of information.</p>
        </div>
      </comment>
    </parameter>

    <parameter isout="1">
      <name>png</name>
      <prompt lang="en">tmhmm graphic.</prompt>
      <type>
        <datatype>
          <superclass>Binary</superclass>
          <class>tmhmm_graphic</class>
        </datatype>
        <dataFormat>png</dataFormat>
      </type>
      <precond>
        <code proglang="perl">output_opt == "0"</code>
        <code proglang="python">output_opt == "0"</code>
      </precond>
      <filenames>
        <code proglang="perl">"*.png"</code>
        <code proglang="python">"*.png"</code>
      </filenames>
            <comment>
        <div xmlns="http://www.w3.org/1999/xhtml">
        <p>The plot shows the posterior probabilities
           of inside/outside/TM helix. Here one can see possible weak TM helices that
           were not predicted, and one can get an idea of the certainty of each
           segment in the prediction.</p>
        <p>At the top of the plot (between 1 and 1.2) the N-best prediction is shown.</p>
        <p>The plot is obtained by calculating the total probability that a
           residue sits in helix, inside, or outside summed over all possible
           paths through the model. Sometimes it seems like the plot and the
           prediction are contradictory, but that is because the plot shows probabilities
           for each residue, whereas the prediction is the over-all most probable
           structure. Therefore the plot should be seen as a complementary source
           of information.</p>
        </div>
      </comment>
    </parameter>
  
  </parameters>
</program>