This file is indexed.

/usr/share/octave/packages/ga-0.10.0/doc-cache is in octave-ga 0.10.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Created by Octave 3.8.2, Mon Sep 22 16:09:32 2014 UTC <root@rama>
# name: cache
# type: cell
# rows: 3
# columns: 9
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
crossoverscattered


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
 simplified example (nvars == 4)
 p1 = [varA varB varC varD]
 p2 = [var1 var2 var3 var4]
 b = [1 1 0 1]
 child = [varA varB var3 varD]



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 simplified example (nvars == 4)
 p1 = [varA varB varC varD]
 p2 = [var1 var2 va



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
fitscalingrank


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
TODO
ranks ([7,2,2]) == [3.0,1.5,1.5]
is [3,1,2] (or [3,2,1]) useful? 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
TODO
ranks ([7,2,2]) == [3.0,1.5,1.5]
is [3,1,2] (or [3,2,1]) useful? 




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
ga


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1858
 -- Function File: X = ga (FITNESSFCN, NVARS)
 -- Function File: X = ga (FITNESSFCN, NVARS, A, B)
 -- Function File: X = ga (FITNESSFCN, NVARS, A, B, AEQ, BEQ)
 -- Function File: X = ga (FITNESSFCN, NVARS, A, B, AEQ, BEQ, LB, UB)
 -- Function File: X = ga (FITNESSFCN, NVARS, A, B, AEQ, BEQ, LB, UB,
          NONLCON)
 -- Function File: X = ga (FITNESSFCN, NVARS, A, B, AEQ, BEQ, LB, UB,
          NONLCON, OPTIONS)
 -- Function File: X = ga (PROBLEM)
 -- Function File: [X, FVAL] = ga (...)
 -- Function File: [X, FVAL, EXITFLAG] = ga (...)
 -- Function File: [X, FVAL, EXITFLAG, OUTPUT] = ga (...)
 -- Function File: [X, FVAL, EXITFLAG, OUTPUT, POPULATION] = ga (...)
 -- Function File: [X, FVAL, EXITFLAG, OUTPUT, POPULATION, SCORES] = ga
          (...)
     Find minimum of function using genetic algorithm.

     *Inputs*
     FITNESSFCN
          The objective function to minimize.  It accepts a vector X of
          size 1-by-NVARS, and returns a scalar evaluated at X.
     NVARS
          The dimension (number of design variables) of FITNESSFCN.
     OPTIONS
          The structure of the optimization parameters; can be created
          using the 'gaoptimset' function.  If not specified, 'ga'
          minimizes with the default optimization parameters.
     PROBLEM
          A structure containing the following fields:
             * 'fitnessfcn'
             * 'nvars'
             * 'Aineq'
             * 'Bineq'
             * 'Aeq'
             * 'Beq'
             * 'lb'
             * 'ub'
             * 'nonlcon'
             * 'randstate'
             * 'randnstate'
             * 'solver'
             * 'options'

     *Outputs*
     X
          The local unconstrained found minimum to the objective
          function, FITNESSFCN.
     FVAL
          The value of the fitness function at X.

     See also: gaoptimset.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Find minimum of function using genetic algorithm.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
gacreationuniform


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 489
 -- Function File: POPULATION = gacreationuniform (GENOMELENGTH,
          FITNESSFCN, OPTIONS)
     Create a random initial population with a uniform distribution.

     *Inputs*
     GENOMELENGTH
          The number of indipendent variables for the fitness function.
     FITNESSFCN
          The fitness function.
     OPTIONS
          The options structure.

     *Outputs*
     POPULATION
          The initial population for the genetic algorithm.

     See also: ga, gaoptimset.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Create a random initial population with a uniform distribution.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
gaoptimset


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1261
 -- Function File: OPTIONS = gaoptimset
 -- Function File: OPTIONS = gaoptimset ('PARAM1', VALUE1, 'PARAM2',
          VALUE2, ...)
     Create genetic algorithm options structure.

     *Inputs*
     PARAM
          Parameter to set.  Unspecified parameters are set to their
          default values; specifying no parameters is allowed.
     VALUE
          Value of PARAM.

     *Outputs*
     OPTIONS
          Structure containing the options, or parameters, for the
          genetic algorithm.

     *Options*
     'CreationFcn'
     'CrossoverFcn'
     'CrossoverFraction'
     'EliteCount'
     'FitnessLimit'
     'FitnessScalingFcn'
     'Generations'
     'InitialPopulation'
          Can be partial.
     'InitialScores'
          column vector | [] (default) .  Can be partial.
     'MutationFcn'
     'PopInitRange'
     'PopulationSize'
     'SelectionFcn'
     'TimeLimit'
     'UseParallel'
          "always" | "never" (default) .  Parallel evaluation of
          objective function.  TODO: parallel evaluation of nonlinear
          constraints
     'Vectorized'
          "on" | "off" (default) .  Vectorized evaluation of objective
          function.  TODO: vectorized evaluation of nonlinear
          constraints

     See also: ga.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Create genetic algorithm options structure.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
mutationgaussian


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
 start mutationgaussian logic



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
 start mutationgaussian logic




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
rastriginsfcn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
 -- Function File: Y = rastriginsfcn (X)
     Rastrigin's function.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
Rastrigin's function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
selectionstochunif


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
 fix an entry of the steps (or parents) vector



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
 fix an entry of the steps (or parents) vector




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
test_ga


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
 -- Script File: test_ga
     Execute all available tests at once.




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Execute all available tests at once.