/usr/share/octave/packages/statistics-1.3.0/cmdscale.m is in octave-statistics 1.3.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | ## Copyright (C) 2014 JD Walsh <walsh@math.gatech.edu>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} @var{Y} = cmdscale (@var{D})
## @deftypefnx{Function File} [@var{Y}, @var{e} ] = cmdscale (@var{D})
## Classical multidimensional scaling of a matrix.
##
## Takes an @var{n} by @var{n} distance (or difference, similarity, or
## dissimilarity) matrix @var{D}. Returns @var{Y}, a matrix of @var{n} points
## with coordinates in @var{p} dimensional space which approximate those
## distances (or differences, similarities, or dissimilarities). Also returns
## the eigenvalues @var{e} of
## @code{@var{B} = -1/2 * @var{J} * (@var{D}.^2) * @var{J}}, where
## @code{J = eye(@var{n}) - ones(@var{n},@var{n})/@var{n}}. @var{p}, the number
## of columns of @var{Y}, is equal to the number of positive real eigenvalues of
## @var{B}.
##
## @var{D} can be a full or sparse matrix or a vector of length
## @code{@var{n}*(@var{n}-1)/2} containing the upper triangular elements (like
## the output of the @code{pdist} function). It must be symmetric with
## non-negative entries whose values are further restricted by the type of
## matrix being represented:
##
## * If @var{D} is either a distance, dissimilarity, or difference matrix, then
## it must have zero entries along the main diagonal. In this case the points
## @var{Y} equal or approximate the distances given by @var{D}.
##
## * If @var{D} is a similarity matrix, the elements must all be less than or
## equal to one, with ones along the the main diagonal. In this case the points
## @var{Y} equal or approximate the distances given by
## @code{@var{D} = sqrt(ones(@var{n},@var{n})-@var{D})}.
##
## @var{D} is a Euclidean matrix if and only if @var{B} is positive
## semi-definite. When this is the case, then @var{Y} is an exact representation
## of the distances given in @var{D}. If @var{D} is non-Euclidean, @var{Y} only
## approximates the distance given in @var{D}. The approximation used by
## @code{cmdscale} minimizes the statistical loss function known as
## @var{strain}.
##
## The returned @var{Y} is an @var{n} by @var{p} matrix showing possible
## coordinates of the points in @var{p} dimensional space
## (@code{@var{p} < @var{n}}). The columns are correspond to the positive
## eigenvalues of @var{B} in descending order. A translation, rotation, or
## reflection of the coordinates given by @var{Y} will satisfy the same distance
## matrix up to the limits of machine precision.
##
## For any @code{@var{k} <= @var{p}}, if the largest @var{k} positive
## eigenvalues of @var{B} are significantly greater in absolute magnitude than
## its other eigenvalues, the first @var{k} columns of @var{Y} provide a
## @var{k}-dimensional reduction of @var{Y} which approximates the distances
## given by @var{D}. The optional return @var{e} can be used to consider various
## values of @var{k}, or to evaluate the accuracy of specific dimension
## reductions (e.g., @code{@var{k} = 2}).
##
## Reference: Ingwer Borg and Patrick J.F. Groenen (2005), Modern
## Multidimensional Scaling, Second Edition, Springer, ISBN: 978-0-387-25150-9
## (Print) 978-0-387-28981-6 (Online)
##
## @seealso{pdist}
## @end deftypefn
## Author: JD Walsh <walsh@math.gatech.edu>
## Created: 2014-10-31
## Description: Classical multidimensional scaling
## Keywords: multidimensional-scaling mds distance clustering
## TO DO: include missing functions `mdscale' and `procrustes' in @seealso
function [Y, e] = cmdscale (D)
% Check for matrix input
if ((nargin ~= 1) || ...
(~any(strcmp ({'matrix' 'scalar' 'range'}, typeinfo(D)))))
usage ('cmdscale: input must be vector or matrix; see help');
endif
% If vector, convert to matrix; otherwise, check for square symmetric input
if (isvector (D))
D = squareform (D);
elseif ((~issquare (D)) || (norm (D - D', 1) > 0))
usage ('cmdscale: matrix input must be square symmetric; see help');
endif
n = size (D,1);
% Check for valid format (see help above); If similarity matrix, convert
if (any (any (D < 0)))
usage ('cmdscale: entries must be nonnegative; see help');
elseif (trace (D) ~= 0)
if ((~all (diag (D) == 1)) || (~all (D <= 1)))
usage ('cmdscale: input must be distance vector or matrix; see help');
endif
D = sqrt (ones (n,n) - D);
endif
% Build centering matrix, perform double centering, extract eigenpairs
J = eye (n) - ones (n,n) / n;
B = -1 / 2 * J * (D .^ 2) * J;
[Q, e] = eig (B);
e = diag (e);
etmp = e;
e = sort(e, 'descend');
% Remove complex eigenpairs (only possible due to machine approximation)
if (iscomplex (etmp))
for i = 1 : size (etmp,1)
cmp(i) = (isreal (etmp(i)));
endfor
etmp = etmp(cmp);
Q = Q(:,cmp);
endif
% Order eigenpairs
[etmp, ord] = sort (etmp, 'descend');
Q = Q(:,ord);
% Remove negative eigenpairs
cmp = (etmp > 0);
etmp = etmp(cmp);
Q = Q(:,cmp);
% Test for n-dimensional results
if (size(etmp,1) == n)
etmp = etmp(1:n-1);
Q = Q(:, 1:n-1);
endif
% Build output matrix Y
Y = Q * diag (sqrt (etmp));
endfunction
%!shared m, n, X, D
%! m = randi(100) + 1; n = randi(100) + 1; X = rand(m, n); D = pdist(X);
%!assert(norm(pdist(cmdscale(D))), norm(D), sqrt(eps))
%!assert(norm(pdist(cmdscale(squareform(D)))), norm(D), sqrt(eps))
|