This file is indexed.

/usr/share/octave/packages/statistics-1.3.0/jackknife.m is in octave-statistics 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
## Copyright (C) 2011 Alexander Klein <alexander.klein@math.uni-giessen.de>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {@var{jackstat} =} jackknife (@var{E}, @var{x}, @dots{})
## Compute jackknife estimates of a parameter taking one or more given samples as parameters.
## In particular, @var{E} is the estimator to be jackknifed as a function name, handle,
## or inline function, and @var{x} is the sample for which the estimate is to be taken.
## The @var{i}-th entry of @var{jackstat} will contain the value of the estimator
## on the sample @var{x} with its @var{i}-th row omitted.
##
## @example
## @group
## jackstat(@var{i}) = @var{E}(@var{x}(1 : @var{i} - 1, @var{i} + 1 : length(@var{x})))
## @end group
## @end example
##
## Depending on the number of samples to be used, the estimator must have the appropriate form:
## If only one sample is used, then the estimator need not be concerned with cell arrays,
## for example jackknifing the standard deviation of a sample can be performed with
## @code{@var{jackstat} = jackknife (@@std, rand (100, 1))}.
## If, however, more than one sample is to be used, the samples must all be of equal size,
## and the estimator must address them as elements of a cell-array,
## in which they are aggregated in their order of appearance:
##
## @example
## @group
## @var{jackstat} = jackknife(@@(x) std(x@{1@})/var(x@{2@}), rand (100, 1), randn (100, 1)
## @end group
## @end example
##
## If all goes well, a theoretical value @var{P} for the parameter is already known,
## @var{n} is the sample size, 
## @code{@var{t} = @var{n} * @var{E}(@var{x}) - (@var{n} - 1) * mean(@var{jackstat})}, and
## @code{@var{v} = sumsq(@var{n} * @var{E}(@var{x}) - (@var{n} - 1) * @var{jackstat} - @var{t}) / (@var{n} * (@var{n} - 1))}, then
## @code{(@var{t}-@var{P})/sqrt(@var{v})} should follow a t-distribution with @var{n}-1 degrees of freedom.
##
## Jackknifing is a well known method to reduce bias; further details can be found in:
## @itemize @bullet
## @item Rupert G. Miller: The jackknife-a review; Biometrika (1974) 61(1): 1-15; doi:10.1093/biomet/61.1.1 
## @item Rupert G. Miller: Jackknifing Variances; Ann. Math. Statist. Volume 39, Number 2 (1968), 567-582; doi:10.1214/aoms/1177698418
## @item M. H. Quenouille: Notes on Bias in Estimation; Biometrika Vol. 43, No. 3/4 (Dec., 1956), pp. 353-360; doi:10.1093/biomet/43.3-4.353
## @end itemize
## @end deftypefn

## Author: Alexander Klein <alexander.klein@math.uni-giessen.de>
## Created: 2011-11-25

function jackstat = jackknife ( anEstimator, varargin )


	## Convert function name to handle if necessary, or throw
	## an error.
	if ( !strcmp ( typeinfo ( anEstimator ), "function handle" ) )

		if ( isascii ( anEstimator ) )

			anEstimator = str2func ( anEstimator );

		else

			error ( "Estimators must be passed as function names or handles!" );
		end
	end


	## Simple jackknifing can be done with a single vector argument, and
	## first and foremost with a function that does not care about
	## cell-arrays.
	if ( length ( varargin ) == 1 && isnumeric ( varargin { 1 } ) )

		aSample = varargin { 1 };

		g = length ( aSample );
		
		jackstat = zeros ( 1, g );

		for k = 1 : g
			jackstat ( k ) = anEstimator ( aSample ( [ 1 : k - 1, k + 1 : g ] ) );
		end

	## More complicated input requires more work, however.
	else

		g = cellfun ( @(x) length ( x ), varargin );

		if ( any ( g - g ( 1 ) ) )

			error ( "All passed data must be of equal length!" );
		end

		g = g ( 1 );

		jackstat = zeros ( 1, g );

		for k = 1 : g

			jackstat ( k ) = anEstimator ( cellfun ( @(x) x( [ 1 : k - 1, k + 1 : g ] ), varargin, "UniformOutput", false ) );
		end

	end
endfunction


%!test
%! ##Example from Quenouille, Table 1
%! d=[0.18 4.00 1.04 0.85 2.14 1.01 3.01 2.33 1.57 2.19];
%! jackstat = jackknife ( @(x) 1/mean(x), d );
%! assert ( 10 / mean(d) - 9 * mean(jackstat), 0.5240, 1e-5 );

%!demo
%! for k = 1:1000
%!  x=rand(10,1);
%!  s(k)=std(x);
%!  jackstat=jackknife(@std,x);
%!  j(k)=10*std(x) - 9*mean(jackstat);
%! end
%! figure();hist([s',j'], 0:sqrt(1/12)/10:2*sqrt(1/12))

%!demo
%! for k = 1:1000
%!  x=randn(1,50);
%!  y=rand(1,50);
%!  jackstat=jackknife(@(x) std(x{1})/std(x{2}),y,x);
%!  j(k)=50*std(y)/std(x) - 49*mean(jackstat);
%!  v(k)=sumsq((50*std(y)/std(x) - 49*jackstat) - j(k)) / (50 * 49);
%! end
%! t=(j-sqrt(1/12))./sqrt(v);
%! figure();plot(sort(tcdf(t,49)),"-;Almost linear mapping indicates good fit with t-distribution.;")