/usr/share/octave/packages/statistics-1.3.0/tricdf.m is in octave-statistics 1.3.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | ## Copyright (C) 2016 Dag Lyberg
## Copyright (C) 1997-2015 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {} {} tricdf (@var{x}, @var{a}, @var{b}, @var{c})
## Compute the cumulative distribution function (CDF) at @var{x} of the
## triangular distribution with parameters @var{a}, @var{b}, and @var{c}
## on the interval [@var{a}, @var{b}].
## @end deftypefn
## Author: Dag Lyberg <daglyberg80@gmail.com>
## Description: CDF of the triangle distribution
function cdf = tricdf (x, a, b, c)
if (nargin != 4)
print_usage ();
endif
if (! isscalar (a) || ! isscalar (b) || ! isscalar (c))
[retval, x, a, b, c] = common_size (x, a, b, c);
if (retval > 0)
error ("tricdf: X, A, B, and C must be of common size or scalars");
endif
endif
if (iscomplex (x) || iscomplex (a) || iscomplex (b) || iscomplex (c))
error ("tricdf: X, A, B, and C must not be complex");
endif
if (isa (x, "single") || isa (a, "single")
|| isa (b, "single") || isa (c, "single"))
cdf = zeros (size (x), "single");
else
cdf = zeros (size (x));
endif
k = isnan (x) | !(a < b) | !(c >= a) | !(c <= b) ;
cdf(k) = NaN;
k = (x > a) & (a < b) & (a <= c) & (c <= b);
if (isscalar (a) && isscalar (b) && isscalar (c))
h = 2 / (b-a);
k_temp = k & (c <= x);
full_area = (c-a) * h / 2;
cdf(k_temp) += full_area;
k_temp = k & (a < x) & (x < c);
area = (x(k_temp) - a).^2 * h;
cdf(k_temp) += area;
k_temp = k & (b <= x);
full_area = (b-c) * h / 2;
cdf(k_temp) += full_area;
k_temp = k & (c < x) & (x < b);
area = (b-x(k_temp)).^2 * h;
cdf(k_temp) += full_area - area;
else
h = 2 ./ (b-a);
k_temp = k & (c <= x);
full_area = (c(k_temp)-a(k_temp)) .* h(k_temp) / 2;
cdf(k_temp) += full_area;
k_temp = k & (a <= x) & (x < c);
area = (x(k_temp) - a(k_temp)).^2 .* h(k_temp);
cdf(k_temp) += area;
k_temp = k & (b <= x);
full_area = (b(k_temp)-c(k_temp)) .* h(k_temp) / 2;
cdf(k_temp) += full_area;
k_temp = k & (c <= x) & (x < b);
area = (b(k_temp)-x(k_temp)).^2 .* h(k_temp);
cdf(k_temp) += full_area - area;
endif
endfunction
%!shared x,y
%! x = [-1, 0, 0.1, 0.5, 0.9, 1, 2] + 1;
%! y = [0, 0, 0.02, 0.5, 0.98, 1 1];
%!assert (tricdf (x, ones (1,7), 2*ones (1,7), 1.5*ones (1,7)), y, eps)
%!assert (tricdf (x, 1*ones (1,7), 2, 1.5), y, eps)
%!assert (tricdf (x, 1, 2*ones (1,7), 1.5), y, eps)
%!assert (tricdf (x, 1, 2, 1.5*ones (1,7)), y, eps)
%!assert (tricdf (x, 1, 2, 1.5), y, eps)
%!assert (tricdf (x, [1, 1, NaN, 1, 1, 1, 1], 2, 1.5), [y(1:2), NaN, y(4:7)], eps)
%!assert (tricdf (x, 1, 2*[1, 1, NaN, 1, 1, 1, 1], 1.5), [y(1:2), NaN, y(4:7)], eps)
%!assert (tricdf (x, 1, 2, 1.5*[1, 1, NaN, 1, 1, 1, 1]), [y(1:2), NaN, y(4:7)], eps)
%!assert (tricdf ([x, NaN], 1, 2, 1.5), [y, NaN], eps)
## Test class of input preserved
%!assert (tricdf (single ([x, NaN]), 1, 2, 1.5), single ([y, NaN]), eps('single'))
%!assert (tricdf ([x, NaN], single (1), 2, 1.5), single ([y, NaN]), eps('single'))
%!assert (tricdf ([x, NaN], 1, single (2), 1.5), single ([y, NaN]), eps('single'))
%!assert (tricdf ([x, NaN], 1, 2, single (1.5)), single ([y, NaN]), eps('single'))
## Test input validation
%!error tricdf ()
%!error tricdf (1)
%!error tricdf (1,2)
%!error tricdf (1,2,3)
%!error tricdf (1,2,3,4,5)
%!error tricdf (1, ones (3), ones (2), ones (2))
%!error tricdf (1, ones (2), ones (3), ones (2))
%!error tricdf (1, ones (2), ones (2), ones (3))
%!error tricdf (i, 2, 2, 2)
%!error tricdf (2, i, 2, 2)
%!error tricdf (2, 2, i, 2)
%!error tricdf (2, 2, 2, i)
|