This file is indexed.

/usr/share/octave/packages/statistics-1.3.0/ttest2.m is in octave-statistics 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
## Copyright (C) 2014 Tony Richardson
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{h}, @var{pval}, @var{ci}, @var{stats}] =} ttest2 (@var{x}, @var{y})
## @deftypefnx {Function File} {[@var{h}, @var{pval}, @var{ci}, @var{stats}] =} ttest2 (@var{x}, @var{y}, @var{Name}, @var{Value})
## Test for mean of a normal sample with known variance.
##
## Perform a T-test of the null hypothesis @code{mean (@var{x}) ==
## @var{m}} for a sample @var{x} from a normal distribution with unknown
## mean and unknown std deviation.  Under the null, the test statistic
## @var{t} has a Student's t distribution.
##
## If the second argument @var{y} is a vector, a paired-t test of the
## hypothesis @code{mean (@var{x}) = mean (@var{y})} is performed.
##
## The argument @qcode{"alpha"} can be used to specify the significance level
## of the test (the default value is 0.05).  The string
## argument @qcode{"tail"}, can be used to select the desired alternative
## hypotheses.  If @qcode{"alt"} is @qcode{"both"} (default) the null is 
## tested against the two-sided alternative @code{mean (@var{x}) != @var{m}}.
## If @qcode{"alt"} is @qcode{"right"} the one-sided 
## alternative @code{mean (@var{x}) > @var{m}} is considered.
## Similarly for @qcode{"left"}, the one-sided alternative @code{mean
## (@var{x}) < @var{m}} is considered.  When @qcode{"vartype"} is @qcode{"equal"}
## the variances are assumed to be equal (this is the default).  When
## @qcode{"vartype"} is @qcode{"unequal"} the variances are not assumed equal.
## When argument @var{x} is a matrix the @qcode{"dim"} argument can be 
## used to selection the dimension over which to perform the test.
## (The default is the first non-singleton dimension.)
##
## If @var{h} is 0 the null hypothesis is accepted, if it is 1 the null
## hypothesis is rejected. The p-value of the test is returned in @var{pval}.
## A 100(1-alpha)% confidence interval is returned in @var{ci}. @var{stats}
## is a structure containing the value of the test statistic (@var{tstat}),
## the degrees of freedom (@var{df}) and the sample standard deviation
## (@var{sd}).
##
## @end deftypefn

## Author: Tony Richardson <richardson.tony@gmail.com>

function [h, p, ci, stats] = ttest2(x, y, varargin)
  
  alpha = 0.05;
  tail  = 'both';
  vartype = 'equal';

  % Find the first non-singleton dimension of x
  dim = min(find(size(x)~=1));
  if isempty(dim), dim = 1; end

  i = 1;
  while ( i <= length(varargin) )
    switch lower(varargin{i})
      case 'alpha'
        i = i + 1;
        alpha = varargin{i};
      case 'tail'
        i = i + 1;
        tail = varargin{i};
      case 'vartype'
        i = i + 1;
        vartype = varargin{i};
      case 'dim'
        i = i + 1;
        dim = varargin{i};
      otherwise
        error('Invalid Name argument.',[]);
    end
    i = i + 1;
  end
  
  if ~isa(tail, 'char')
    error('Tail argument to ttest2 must be a string\n',[]);
  end
  
  m = size(x, dim);
  n = size(y, dim);
  x_bar = mean(x,dim)-mean(y,dim);
  s1_var = var(x, 0, dim);
  s2_var = var(y, 0, dim);

  switch lower(vartype)
    case 'equal'
      stats.tstat = 0;
      stats.df = (m + n - 2)*ones(size(x_bar));
      sp_var = ((m-1)*s1_var + (n-1)*s2_var)./stats.df;
      stats.sd = sqrt(sp_var);
      x_bar_std = sqrt(sp_var*(1/m+1/n));
    case 'unequal'
      stats.tstat = 0;
      se1 = sqrt(s1_var/m);
      se2 = sqrt(s2_var/n);
      sp_var = s1_var/m + s2_var/n;
      stats.df = ((se1.^2+se2.^2).^2 ./ (se1.^4/(m-1) + se2.^4/(n-1)));
      stats.sd = [sqrt(s1_var); sqrt(s2_var)];
      x_bar_std = sqrt(sp_var);
    otherwise
      error('Invalid fifth (vartype) argument to ttest2\n',[]);
  end

  stats.tstat = x_bar./x_bar_std;

  % Based on the "tail" argument determine the P-value, the critical values,
  % and the confidence interval.
  switch lower(tail)
    case 'both'
      p = 2*(1 - tcdf(abs(stats.tstat),stats.df));
      tcrit = -tinv(alpha/2,stats.df);
      %ci = [x_bar-tcrit*stats.sd; x_bar+tcrit*stats.sd];
      ci = [x_bar-tcrit.*x_bar_std; x_bar+tcrit.*x_bar_std];
    case 'left'
      p = tcdf(stats.tstat,stats.df);
      tcrit = -tinv(alpha,stats.df);
      ci = [-inf*ones(size(x_bar)); x_bar+tcrit.*x_bar_std];
    case 'right'
      p = 1 - tcdf(stats.tstat,stats.df);
      tcrit = -tinv(alpha,stats.df);
      ci = [x_bar-tcrit.*x_bar_std; inf*ones(size(x_bar))];
    otherwise
      error('Invalid fourth (tail) argument to ttest2\n',[]);
  end

  % Reshape the ci array to match MATLAB shaping
  if and(isscalar(x_bar), dim==2)
    ci = ci(:)';
    stats.sd = stats.sd(:)';
  elseif size(x_bar,2)<size(x_bar,1)
    ci = reshape(ci(:),length(x_bar),2);
    stats.sd = reshape(stats.sd(:),length(x_bar),2);
  end

  % Determine the test outcome
  % MATLAB returns this a double instead of a logical array
  h = double(p < alpha);  
end