/usr/share/povray-3.7/include/rand.inc is in povray-includes 1:3.7.0.0-9.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | // This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.
// To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a
// letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
// Persistence of Vision Ray Tracer version 3.5 Include File
// File: rand.inc
// Last updated: 2001.8.9
// Description: some predefined random number generators, and
// macros for working with random numbers.
// Random number distribution macros contributed by Ingo Janssen.
#ifndef(RAND_INC_TEMP)
#declare RAND_INC_TEMP = version;
#version 3.5;
#ifdef(View_POV_Include_Stack)
#debug "including rand.inc\n"
#end
#include "consts.inc"
//--------------------
//Random number generators:
//--------------------
#declare RdmA = seed(574647);// Random stream A
#declare RdmB = seed(324879);// Random stream B
#declare RdmC = seed(296735);// Random stream C
#declare RdmD = seed(978452);// Random stream D
//--------------------
//Random number macros:
//--------------------
//Probability, returns true or false.
//P is probability of returning true, RS is a random number stream.
#macro Prob(P, RS) (rand(RS) < P) #end
/////////////////////////////////////////
// Continuous Symmetric Distributions //
////////////////////////////////////////
#declare Gauss_Next = false;
// Cauchy distribution
// Input: Mu=mean, Sigma= standard deviation and a random stream
#macro Rand_Cauchy(Mu, Sigma, Stream)
(Sigma*tan(pi*(rand(Stream)-0.5))+Mu)
#end
// Student's-t distribution
// Input: N= degrees of freedom and a random stream.
#macro Rand_Student(N, Stream)
(Rand_Gauss(0,1,Stream)/sqrt(Rand_Chi_Square(N,Stream)/N))
#end
// Normal distribution
// Input: Mu=mean, Sigma= standard deviation and a random stream
// Output: a random value in the range of the normal distribution
// defined by the standard deviation, around the mean.
#macro Rand_Normal(Mu, Sigma, Stream)
#local Cn=4*exp(-0.5)/sqrt(2);
#local Loop=true;
#while (Loop)
#local R=rand(Stream);
#local V=Cn*(rand(Stream)-0.5)/R;
#local VV=V*V/4;
#if (VV<=-ln(R))
#local Loop=false;
#end
#end
(Mu+(V*Sigma))
#end
// Gaussian distribution
// like Rand_Normal, but a bit faster
#macro Rand_Gauss(Mu, Sigma, Stream)
#local Zgauss=Gauss_Next;
#declare Gauss_Next=false;
#if (!Zgauss)
#local R1=rand(Stream)*2*pi;
#local R2=sqrt(-2*ln(1-rand(Stream)));
#local Zgauss=cos(R1)*R2;
#declare Gauss_Next=sin(R1)*R2;
#end
(Mu+(Zgauss*Sigma))
#end
/////////////////////////////////////
// Continuous Skewed Distributions //
/////////////////////////////////////
// Input: spline and a random stream.
// Output: a random value in the range 0 - 1.
// The probability of the value is controled
// by the spline. The splines clock_value is
// the output value and the .y value its chanche.
#macro Rand_Spline(Spl, Stream)
#local I=1;
#while (I)
#declare cVal=rand(Stream);
#if (Spl(cVal).y>=rand(Stream))
#local I=0;
(cVal)
#end
#end
#end
// Gamma distribution
// Input: Alpha= shape parameter >0, Beta= scale parameter >0 and a random stream.
#macro Rand_Gamma(Alpha, Beta, Stream)
#if(Alpha<=0 | Beta<=0)
#error "Alpha and Beta should be bigger than 0"
#end
#local Ainv=sqrt(2*Alpha-1);
#local BBB=Alpha-ln(4);
#local CCC=Alpha+Ainv;
#if (Alpha>1)
#local Loop = true;
#while (Loop)
#local R1=rand(Stream);
#local R2=rand(Stream);
#local V=ln(R1/(1-R1))/Ainv;
#local X=Alpha*exp(V);
#local Z=R1*R1*R2;
#local R=BBB+CCC*V-X;
#local RZ=R+(1+ln(4.5))-4.5*Z;
#if (RZ>=0 | R>=ln(Z))
#local Loop=false;
#local RETURN=X;
#end
#end
#end
#if (Alpha=1)
#local R=rand(Stream);
#while (R<=1e-7)
#local R=rand(Stream);
#end
#local RETURN=-ln(R);
#end
#if (Alpha>0 & Alpha<1)
#local Loop=true;
#while (Loop)
#local R=rand(Stream);
#local B=(e+Alpha)/e;
#local P=B*R;
#if (P<=1)
#local X=pow(P, (1/Alpha));
#else
#local X=-ln((B-P)/Alpha);
#end
#local R1=rand(Stream);
#if(!( ((P<=1) & (R1>exp(-X))) | ((P>1) & (R1>pow(X,Alpha-1))) ))
#local RETURN=X;
#local Loop=false;
#end
#end
#end
#local Return=Beta*RETURN;
Return
#end
// Beta variate
// Input: Alpha= shape Gamma1, Beta= shape Gamma2 and a random stream.
#macro Rand_Beta(Alpha, Beta, Stream)
#if(Alpha<=0 | Beta<=0)
#error "Alpha and Beta should be bigger than 0"
#end
#local Gamma1=Rand_Gamma(Alpha,1,Stream);
#if (Gamma1=0)
#local Return=0;
#else
#local Return=(Gamma1/(Gamma1+Rand_Gamma(Beta,1,Stream)));
#end
(Return)
#end
// Chi Square random variate
// Input: N= degrees of freedom int() and a random stream
#macro Rand_Chi_Square(N, Stream)
(Rand_Gamma(2,0.5*int(N),Stream))
#end
// F-Distribution
// Input: N, M degrees of freedom and a random stream.
#macro Rand_F_Dist(N, M, Stream)
#local C1=Rand_Chi_Square(M,Stream);
#local C2=Rand_Chi_Square(N,Stream);
#local Return=(M*C1)/(N*C2);
(Return)
#end
//Triangular distribution
//Input: Min, Max, Mode (Min < Mode < Max) and a random stream
#macro Rand_Triangle(Min, Max, Mode, Stream)
#local Right=Max-Mode;
#local Left=Mode-Min;
#local Range=Max-Min;
#local R=rand(Stream);
#if(R<=Left/Range)
#local Return= Min+sqrt(Left*Range*R);
#else
#local Return= Max-sqrt(Right*Range*(1-R));
#end
(Return)
#end
// Erlang variate
// Input: Mu= mean >=0, K= number of exponential samples and a random stream.
#macro Rand_Erlang(Mu, K, Stream)
#local Prod=1;
#local I=0;
#while(I<K)
#local Prod=Prod*rand(Stream);
#local I=I+1;
#end
(-Mu*ln(Prod))
#end
// Exponential distribution
// Input: Lambda = rate = 1/mean
#macro Rand_Exp(Lambda, Stream)
(-ln(rand(Stream))/Lambda)
#end
// Lognormal distribution
// Input: Mu=mean, Sigma= standard deviation and a random stream
#macro Rand_Lognormal(Mu, Sigma, Stream)
(exp(Rand_Gauss(Mu,Sigma,Stream)))
#end
// Pareto distribution
#macro Rand_Pareto(Alpha, Stream)
(1/pow(rand(Stream),(1/Alpha)))
#end
// Weibull distribution
#macro Rand_Weibull(Alpha, Beta, Stream)
(Alpha*pow(-ln(rand(Stream)),(1/Beta)))
#end
////////////////////////////////////
// Discrete Distribution //
////////////////////////////////////
// Bernoulli distribution
// Input: P = probability range: 0 - 1. And a random stream.
// Output: the BOOLEAN value TRUE with a probability equal
// to the value of P and FALSE with a probability of 1 - P.
#macro Rand_Bernoulli(P,Stream)
(P>=rand(Stream)?true:false)
#end
// Binomial distribution
// Input: N= number of trials, P= probability [0-1] and a random stream.
#macro Rand_Binomial(N, P, Stream)
#local Count=0;
#local N=int(N);
#local I=0;
#while (I<N)
#if (rand(Stream)<=P)
#local Count=Count+1;
#end
#local I=I+1;
#end
(Count)
#end
//Geometric distribution
//Input: P=probability [0-1] and a random stream.
#macro Rand_Geo(P, Stream)
(floor(ln(rand(Stream))/ln(1-P)))
#end
// Poisson distribution
// Input: Mu= mean and a random stream.
#macro Rand_Poisson(Mu, Stream)
#local Maxtimes = 100000; //just to be sure
#local Cut=exp(-Mu);
#local N=0;
#local R=1;
#while (R>Cut)
#local R=R*rand(Stream);
#local N=N+1;
#if(N>Maxtimes)
#local R=Cut;
#end
#end
(N)
#end
//signed random number, range [-1, 1]
#macro SRand(RS) (rand(RS)*2 - 1) #end
//random number in specified range [Min, Max]
#macro RRand(Min, Max, RS) (rand(RS)*(Max-Min) + Min) #end
//a random point in a box from < 0, 0, 0> to < 1, 1, 1>
#macro VRand(RS) < rand(RS), rand(RS), rand(RS)> #end
//a random point in a box from Mn to Mx
#macro VRand_In_Box(Mn, Mx, RS) (< rand(RS), rand(RS), rand(RS)>*(Mx-Mn) + Mn) #end
//a random point in a unit-radius sphere centered on the origin
//Thanks to Ingo for this macro, which is faster than the original VRand3()
#macro VRand_In_Sphere(Stream)
#local R = pow(rand(Stream),1/3);
#local Theta = 2*pi*rand(Stream);
#local Phi = acos(2*rand(Stream)-1);
(R*<cos(Theta)*sin(Phi),
sin(Theta)*sin(Phi),
cos(Phi)>)
#end
//a random point on a unit-radius sphere centered on the origin
//Author: Ingo
#macro VRand_On_Sphere(Stream)
#local Theta = 2*pi*rand(Stream);
#local Phi = acos(2*rand(Stream)-1);
(<cos(Theta)*sin(Phi),
sin(Theta)*sin(Phi),
cos(Phi)>)
#end
//a random point inside an arbitrary object
//Warning: can be quite slow if the object occupies a small
//portion of the volume of it's bounding box!
//Also, will not work on objects without a definite "inside".
#macro VRand_In_Obj(Obj, RS)
#local Mn = min_extent(Obj);
#local Mx = max_extent(Obj);
#local Pt = VRand_In_Box(Mn, Mx, RS);
#local J = 0;
#while(inside(Obj, Pt) = 0 & J < 1000)
#local Pt = VRand_In_Box(Mn, Mx, RS);
#local J = J + 1;
#end
(Pt)
#end
#version RAND_INC_TEMP;
#end//rand.inc
|