/usr/share/povray-3.7/include/sunpos.inc is in povray-includes 1:3.7.0.0-9.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | // This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.
// To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a
// letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
// Persistence of Vision Ray Tracer Scene Include File
// File: sunpos.inc
// Desc: This macro returns the suns position,
// on a given date, time, and location on earth.
// Date: 15-09-1998
// Updated : 2001-07-27
// Auth: Ingo Janssen
//
#ifndef(SunPos_Inc_Temp)
#declare SunPos_Inc_Temp=version;
#version 3.5;
//
// ======================================================
//
// Assumption: in the scene north is in the +Z direction, south is -Z.
//
// Invoke in your scene:
// light_source {
// SunPos(Year, Month, Day, Hour, Minute, Lstm, LAT, LONG)
// rgb 1
// }
//
// Greenwich, noon on the longest day of 2000 (no daylight saving):
// SunPos(2000, 6, 21, 12, 2, 0, 51.4667, 0.00)
//
// Year: in four digits
// Month: number
// Dat: number
// Time: in 24 hour format
// Lstm: Meridian of your local timezone (+1 hour = +15 deg)
// in degrees (east = positive, west = negative)
// Location on earth:
// LAT: Lattitude in degrees.decimal, northern hemisphere = positive, southern = negative
// LONG: Longitude in degrees.decimal, east = positive, west is negative
//
// The macro returns the position of the sun, but also declares it as the vector SolarPosition.
// Also the found Azimuth (Az) and Altitude (Al) are declared, this can be usefull for
// aligning an object with the sunlight: cylinder{
// <-2,0,0>,<2,0,0>,0.1
// rotate <0, Az-90, Al>
// texture {.. LightRay ..}
// }
//
// ======================================================
//
// Find your local position at http://gnpswww.nima.mil/geonames/GNS/ (Gazetteer search)
//
// Local time(zone) at http://www.hilink.com.au/times/
//
// Equations used here can be found at http://hotel04.ausys.se/pausch/english.htm (Computing rise/set times)
// not only for the sun but also for the moon, planets and other stuff up there.
//
// ======================================================
//
#macro SunPos(Year, Month, Day, Hour, Minute, Lstm, LAT, LONG)
#if (abs(LONG-Lstm)>30)
#debug "\nREMARK: \nLongitude differs by more than 30 degrees from timezone meridian.\n"
#debug concat("Local timezone meridian is:",str(Lstm,5,0),"\n")
#debug concat("Longitude is:",str(LONG,5,0),"\n")
#end
// Calculate universal time (UT)
#local T= Hour+(Minute/60);
#local UT= T-Lstm/15;
#if (0>UT)
#local Day= Day-1;
#local UT= 24+UT;
#end
#if (UT>24)
#local Day= Day+1;
#local UT= UT-24;
#end
// Amount of days to, or from, the year 2000
#local d= 367*Year-int((7*int((Year+int((Month+9))/12)))/4)+int((275*Month)/9)+Day-730530+UT/24;
// Longitude of perihelion (w), eccentricity (e)
#local w= 282.9404+4.70935E-5*d;
#local e= 0.016709-1.151E-9*d;
// Mean anomaly (M), sun's mean longitude (L)
#local M= 356.0470+0.9856002585*d;
#if (0<M<360)
#local M= M-floor(M/360)*360;
#end
#local L= w+M;
#if (0<L<360)
#local L= L-floor(L/360)*360;
#end
// Obliquity of the ecliptic, eccentric anomaly (E)
#local oblecl= 23.4393-3.563E-7*d;
#local E= M+(180/pi)*e*sin(radians(M))*(1+e*cos(radians(M)));
// Sun's rectangular coordinates in the plane of ecliptic (A,B)
#local A= cos(radians(E))-e;
#local B= sin(radians(E))*sqrt(1-e*e);
// Distance (r), true anomaly (V), longitude of the sun (lon)
#local r= sqrt(A*A+B*B);
#local V= degrees(atan2(radians(B),radians(A)));
#local lon= V+w;
#if (0<lon<360)
#local lon= lon-floor(lon/360)*360;
#end
// Calculate declination (Decl) and right ascension (RA)
#local Decl= degrees(asin(sin(radians(oblecl))*sin(radians(lon))));
#local RA= degrees(atan2(sin(radians(lon))*cos(radians(oblecl)),cos(radians(lon))))/15;
// Greenwich meridian siderial time at 00:00 (GMST0),siderial time (SIDTIME), hour angle (HA)
#local GMST0= L/15+12;
#local SIDTIME= GMST0+UT+LONG/15;
#local HA= (SIDTIME-RA)*15;
// This is what we're looking for: Altitude & Azimuth
#declare Al= degrees(asin(sin(radians(LAT))*sin(radians(Decl))+cos(radians(LAT))*cos(radians(Decl))*cos(radians(HA))));
#declare Az= degrees(atan2(sin(radians(HA)),cos(radians(HA))*sin(radians(LAT))-tan(radians(Decl))*cos(radians(LAT))))+180;
#declare SolarPosition=vrotate(<0,0,1000000000>,<-Al,Az,0>);
(SolarPosition)
#end
#version SunPos_Inc_Temp;
#end
|