/usr/share/povray-3.7/include/transforms.inc is in povray-includes 1:3.7.0.0-9.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | // This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.
// To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a
// letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
// Persistence of Vision Ray Tracer version 3.5 Include File
// File: transforms.inc
// Last updated: 2001.8.9
// Description: Macros for dealing with transforms
#ifndef(TRANSFORMS_INC_TEMP)
#declare TRANSFORMS_INC_TEMP = version;
#version 3.5;
#ifdef(View_POV_Include_Stack)
#debug "including transforms.inc\n"
#end
#include "math.inc"
// --------------------
// Transformation macros:
// --------------------
// Reorients and deforms object so original x axis points along A, original y along B,
// and original z along C.
#macro Shear_Trans(A, B, C)
transform {
matrix < A.x, A.y, A.z,
B.x, B.y, B.z,
C.x, C.y, C.z,
0, 0, 0>
}
#end
#macro Matrix_Trans(A, B, C, D)
transform {
matrix < A.x, A.y, A.z,
B.x, B.y, B.z,
C.x, C.y, C.z,
D.x, D.y, D.z>
}
#end
// "stretch" along a specific axis
#macro Axial_Scale_Trans(Axis, Amt)
transform {
transform {Point_At_Trans(Axis) inverse}
scale <1,Amt,1>
Point_At_Trans(Axis)
}
#end
// rotate around a specific axis
// Author: Rune S. Johansen
#macro Axis_Rotate_Trans(Axis, Angle)
#local vX = vaxis_rotate(x,Axis,Angle);
#local vY = vaxis_rotate(y,Axis,Angle);
#local vZ = vaxis_rotate(z,Axis,Angle);
transform {
matrix < vX.x,vX.y,vX.z, vY.x,vY.y,vY.z, vZ.x,vZ.y,vZ.z, 0,0,0 >
}
#end
// Rotate around a specific point
#macro Rotate_Around_Trans(Rotation, Point)
transform {
translate -Point
rotate Rotation
translate Point
}
#end
// based on original Reorient() macro by John VanSickle
#macro Reorient_Trans(Axis1, Axis2)
#local vX1 = vnormalize(Axis1);
#local vX2 = vnormalize(Axis2);
#local Y = vcross(vX1, vX2);
#if(vlength(Y) > 0)
#local vY = vnormalize(Y);
#local vZ1 = vnormalize(vcross(vX1, vY));
#local vZ2 = vnormalize(vcross(vX2, vY));
transform {
matrix < vX1.x, vY.x,vZ1.x, vX1.y,vY.y,vZ1.y, vX1.z,vY.z, vZ1.z, 0,0,0 >
matrix < vX2.x,vX2.y,vX2.z, vY.x,vY.y, vY.z, vZ2.x,vZ2.y,vZ2.z, 0,0,0 >
}
#else
#if (vlength(vX1-vX2)=0)
transform {}
#else
#local vZ = VPerp_To_Vector(vX2);
transform { Axis_Rotate_Trans(vZ,180) }
#end
#end
#end
// Similar to Reorient_Trans(), points y axis along Axis.
#macro Point_At_Trans(YAxis)
#local Y = vnormalize(YAxis);
#local X = VPerp_To_Vector(Y);
#local Z = vcross(X, Y);
Shear_Trans(X, Y, Z)
#end
// Calculates a transformation which will center the bounding box of Object
// along specified axis Axis
// Usage:
// object {MyObj
// Center_Trans(MyObj, x) center along x axis
// You can also center along multiple axis:
// Center_Trans(MyObj, x+y) center along x and y axis
#macro Center_Trans(Object, Axis)
#local Mn = min_extent(Object);
#local Mx = max_extent(Object);
transform {translate -Axis*((Mx - Mn)/2 + Mn)}
#end
// Calculates a transformation which will align the bounding box
// of an object to a point. Negative values on Axis will align to
// the sides facing the negative ends of the coordinate system,
// positive values will align to the opposite sides, 0 means
// not to do any alignment on that axis.
// Usage:
// object {MyObj
// Align_Trans(MyObj, x, Pt)
// Align right side of object to be coplanar with Pt
// Align_Trans(MyObj, -y, Pt)
// Align bottom of object to be coplanar with Pt
#macro Align_Trans(Object, Axis, Pt)
#local Mn = min_extent(Object);
#local Mx = max_extent(Object);
transform {
#if(Axis.x < -0.5)
translate x*(Pt - Mn.x)
#else
#if(Axis.x > 0.5)
translate x*(Pt - Mx.x)
#end
#end
#if(Axis.y < -0.5)
translate y*(Pt - Mn.y)
#else
#if(Axis.y > 0.5)
translate y*(Pt - Mx.y)
#end
#end
#if(Axis.z < -0.5)
translate z*(Pt - Mn.z)
#else
#if(Axis.z > 0.5)
translate z*(Pt - Mx.z)
#end
#end
}
#end
// Aligns an object to a spline for a given time value.
// The Z axis of the object will point in the forward direction
// of the spline and the Y axis of the object will point upwards.
//
// usage: object {MyObj Spline_Trans(MySpline, clock, y, 0.1, 0.5)}
//
// Spline: The spline that the object is aligned to.
//
// Time: The time value to feed to the spline, for example clock.
//
// Sky: The vector that is upwards in your scene, usually y.
//
// Foresight: How much in advance the object will turn and bank.
// Values close to 0 will give precise results, while higher
// values give smoother results. It will not affect parsing
// speed, so just find the value that looks best.
//
// Banking: How much the object tilts when turning. Note that the amount
// of tilting is equally much controlled by the ForeSight value.
//
// Author: Rune S. Johansen
#macro Spline_Trans (Spline, Time, Sky, Foresight, Banking)
#local Location = <0,0,0>+Spline(Time);
#local LocationNext = <0,0,0>+Spline(Time+Foresight);
#local LocationPrev = <0,0,0>+Spline(Time-Foresight);
#local Forward = vnormalize(LocationNext-Location);
#local Right = VPerp_To_Plane(Sky,Forward);
#local Up = VPerp_To_Plane(Forward,Right);
#local Matrix = Matrix_Trans(Right,Up,Forward,Location)
#local BankingRotation =
degrees(atan2(
VRotation(
VProject_Plane((LocationNext-Location),Sky),
VProject_Plane((Location-LocationPrev),Sky),
Up
)*Banking
,1
));
transform {
rotate BankingRotation*z
transform Matrix
}
#end
#macro vtransform(vec, trans)
#local fn = function { transform { trans } }
#local result = (fn(vec.x, vec.y, vec.z));
result
#end
#macro vinv_transform(vec, trans)
#local fn = function { transform { trans inverse } }
#local result = (fn(vec.x, vec.y, vec.z));
result
#end
#version TRANSFORMS_INC_TEMP;
#end
|