This file is indexed.

/usr/share/puredata/doc/3.audio.examples/I03.resynthesis.pd is in puredata-doc 0.47.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#N canvas 73 310 580 406 12;
#N canvas 265 48 643 640 fft-analysis 0;
#X obj 15 164 *~;
#X obj 14 99 inlet~;
#X obj 15 218 rfft~;
#X obj 36 140 tabreceive~ \$0-hann;
#X obj 14 353 *~;
#X obj 56 353 *~;
#X obj 15 8 block~ 512 4;
#X text 85 88 The inlet~ now re-uses 3/4 of the previous block \, along
with the 128 new samples.;
#X text 221 141 window function as before.;
#X obj 76 196 tabreceive~ \$0-gain;
#X obj 77 225 *~;
#X obj 16 506 *~;
#X obj 37 481 tabreceive~ \$0-hann;
#X obj 77 283 /~ 768;
#X text 98 301 divide by 3N/2 (factor of N because rfft and rifft aren't
normalized \, and 3/2 is the gain of overlap-4 reconstruction when
Hann window function is applied twice.);
#X text 120 216 Just to show we're doing something \, we multiply each
channel by a gain controlled by an array in the main window. The control
is quartic-scaled for easy editing.;
#X obj 78 251 *~;
#X text 92 357 Multiply the (complex-valued) spectrum amplitudes by
the (real-valued) gain-and-normalization-factor;
#X obj 15 399 rifft~;
#X text 89 396 Real-valued inverse Fourier transform. This uses only
the first N/@ points of its inputs \, supplying the rest by symmerty
(so it's OK that rfft~ obly puts out those N/2 points.) There's only
one outlet because the output is real-valued.;
#X obj 16 566 outlet~;
#X text 88 499 Multiply by the Hann window function again \, necessary
because the operation we performed might result in a signal that doesn't
go smoothly to zero at both ends.;
#X text 89 566 This repackages the output into 64-sample chunks for
the parent window. Since we're operating with an overlap \, the outlet~
object performs an overlapped sum of the blocks computed in this window.
;
#X text 129 8 block~ object specifies vector size of 512 and overlap
four. This window now computes blocks of 512 samples at intervals of
128 samples computed on the parent patch.;
#X connect 0 0 2 0;
#X connect 1 0 0 0;
#X connect 2 0 4 0;
#X connect 2 1 5 0;
#X connect 3 0 0 1;
#X connect 4 0 18 0;
#X connect 5 0 18 1;
#X connect 9 0 10 0;
#X connect 9 0 10 1;
#X connect 10 0 16 0;
#X connect 10 0 16 1;
#X connect 11 0 20 0;
#X connect 12 0 11 1;
#X connect 13 0 4 1;
#X connect 13 0 5 1;
#X connect 16 0 13 0;
#X connect 18 0 11 0;
#X restore 26 289 pd fft-analysis;
#X text 290 362 updated for Pd version 0.39;
#N canvas 35 66 592 433 Hann-window 0;
#N canvas 0 0 450 300 graph1 0;
#X array \$0-hann 512 float 0;
#X coords 0 1 511 0 200 120 1;
#X restore 293 249 graph;
#X msg 171 263 0;
#X obj 65 312 osc~;
#X obj 65 264 samplerate~;
#X obj 65 335 *~ -0.5;
#X obj 65 358 +~ 0.5;
#X obj 57 383 tabwrite~ \$0-hann;
#X text 279 241 1;
#X text 272 359 0;
#X text 288 372 0;
#X obj 65 288 / 512;
#X obj 57 241 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X text 336 221 Hann window;
#X text 113 310 period 512;
#X text 90 215 recalculate Hann;
#X text 125 230 window table;
#X obj 57 146 loadbang;
#X msg 79 179 \; pd dsp 1;
#X text 40 27 The Hann window is now recomputed on 'loadbang' to make
the file smaller (it doesn't have to be saved with the array.);
#X text 474 375 511;
#X connect 1 0 2 1;
#X connect 2 0 4 0;
#X connect 3 0 10 0;
#X connect 4 0 5 0;
#X connect 5 0 6 0;
#X connect 10 0 2 0;
#X connect 11 0 3 0;
#X connect 11 0 1 0;
#X connect 11 0 6 0;
#X connect 16 0 11 0;
#X connect 16 0 17 0;
#X restore 192 318 pd Hann-window;
#X obj 27 323 output~;
#X obj 25 264 noise~;
#N canvas 0 0 450 300 graph1 0;
#X array \$0-gain 256 float 3;
#A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
#X coords 0 1 256 -0.01 512 60 1;
#X restore 22 168 graph;
#X msg 192 264 const 0;
#X obj 192 293 s \$0-gain;
#X text 138 0 FOURIER RESYNTHESIS;
#X text 6 218 0;
#X text 6 159 1;
#X text 19 228 0;
#X text 516 231 22K;
#X text 270 261 <- reset gain;
#X text 224 148 GAIN;
#X text 21 24 Using Fourier resynthesis you can take an incoming sound
\, operate on its spectrum \, and hear the result. Here we start with
white noise and apply a frequency-dependent gain \, which works as
a graphic equalizer. There are N/2 = 256 points \, each spaced SR/512
Hz. apart (although their frequency ranges overlap). Open the "fft-analysis"
patch to see the workings.;
#X connect 0 0 3 0;
#X connect 0 0 3 1;
#X connect 4 0 0 0;
#X connect 6 0 7 0;