/usr/share/pyshared/aiml/Kernel.py is in python-aiml 0.8.6-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 | # -*- coding: latin-1 -*-
"""This file contains the public interface to the aiml module."""
import AimlParser
import DefaultSubs
import Utils
from PatternMgr import PatternMgr
from WordSub import WordSub
from ConfigParser import ConfigParser
import copy
import glob
import os
import random
import re
import string
import sys
import time
import threading
import xml.sax
class Kernel:
# module constants
_globalSessionID = "_global" # key of the global session (duh)
_maxHistorySize = 10 # maximum length of the _inputs and _responses lists
_maxRecursionDepth = 100 # maximum number of recursive <srai>/<sr> tags before the response is aborted.
# special predicate keys
_inputHistory = "_inputHistory" # keys to a queue (list) of recent user input
_outputHistory = "_outputHistory" # keys to a queue (list) of recent responses.
_inputStack = "_inputStack" # Should always be empty in between calls to respond()
def __init__(self):
self._verboseMode = True
self._version = "PyAIML 0.8.6"
self._brain = PatternMgr()
self._respondLock = threading.RLock()
self._textEncoding = "utf-8"
# set up the sessions
self._sessions = {}
self._addSession(self._globalSessionID)
# Set up the bot predicates
self._botPredicates = {}
self.setBotPredicate("name", "Nameless")
# set up the word substitutors (subbers):
self._subbers = {}
self._subbers['gender'] = WordSub(DefaultSubs.defaultGender)
self._subbers['person'] = WordSub(DefaultSubs.defaultPerson)
self._subbers['person2'] = WordSub(DefaultSubs.defaultPerson2)
self._subbers['normal'] = WordSub(DefaultSubs.defaultNormal)
# set up the element processors
self._elementProcessors = {
"bot": self._processBot,
"condition": self._processCondition,
"date": self._processDate,
"formal": self._processFormal,
"gender": self._processGender,
"get": self._processGet,
"gossip": self._processGossip,
"id": self._processId,
"input": self._processInput,
"javascript": self._processJavascript,
"learn": self._processLearn,
"li": self._processLi,
"lowercase": self._processLowercase,
"person": self._processPerson,
"person2": self._processPerson2,
"random": self._processRandom,
"text": self._processText,
"sentence": self._processSentence,
"set": self._processSet,
"size": self._processSize,
"sr": self._processSr,
"srai": self._processSrai,
"star": self._processStar,
"system": self._processSystem,
"template": self._processTemplate,
"that": self._processThat,
"thatstar": self._processThatstar,
"think": self._processThink,
"topicstar": self._processTopicstar,
"uppercase": self._processUppercase,
"version": self._processVersion,
}
def bootstrap(self, brainFile = None, learnFiles = [], commands = []):
"""Prepare a Kernel object for use.
If a brainFile argument is provided, the Kernel attempts to
load the brain at the specified filename.
If learnFiles is provided, the Kernel attempts to load the
specified AIML files.
Finally, each of the input strings in the commands list is
passed to respond().
"""
start = time.clock()
if brainFile:
self.loadBrain(brainFile)
# learnFiles might be a string, in which case it should be
# turned into a single-element list.
learns = learnFiles
try: learns = [ learnFiles + "" ]
except: pass
for file in learns:
self.learn(file)
# ditto for commands
cmds = commands
try: cmds = [ commands + "" ]
except: pass
for cmd in cmds:
print self._respond(cmd, self._globalSessionID)
if self._verboseMode:
print "Kernel bootstrap completed in %.2f seconds" % (time.clock() - start)
def verbose(self, isVerbose = True):
"""Enable/disable verbose output mode."""
self._verboseMode = isVerbose
def version(self):
"""Return the Kernel's version string."""
return self._version
def numCategories(self):
"""Return the number of categories the Kernel has learned."""
# there's a one-to-one mapping between templates and categories
return self._brain.numTemplates()
def resetBrain(self):
"""Reset the brain to its initial state.
This is essentially equivilant to:
del(kern)
kern = aiml.Kernel()
"""
del(self._brain)
self.__init__()
def loadBrain(self, filename):
"""Attempt to load a previously-saved 'brain' from the
specified filename.
NOTE: the current contents of the 'brain' will be discarded!
"""
if self._verboseMode: print "Loading brain from %s..." % filename,
start = time.clock()
self._brain.restore(filename)
if self._verboseMode:
end = time.clock() - start
print "done (%d categories in %.2f seconds)" % (self._brain.numTemplates(), end)
def saveBrain(self, filename):
"""Dump the contents of the bot's brain to a file on disk."""
if self._verboseMode: print "Saving brain to %s..." % filename,
start = time.clock()
self._brain.save(filename)
if self._verboseMode:
print "done (%.2f seconds)" % (time.clock() - start)
def getPredicate(self, name, sessionID = _globalSessionID):
"""Retrieve the current value of the predicate 'name' from the
specified session.
If name is not a valid predicate in the session, the empty
string is returned.
"""
try: return self._sessions[sessionID][name]
except KeyError: return ""
def setPredicate(self, name, value, sessionID = _globalSessionID):
"""Set the value of the predicate 'name' in the specified
session.
If sessionID is not a valid session, it will be created. If
name is not a valid predicate in the session, it will be
created.
"""
self._addSession(sessionID) # add the session, if it doesn't already exist.
self._sessions[sessionID][name] = value
def getBotPredicate(self, name):
"""Retrieve the value of the specified bot predicate.
If name is not a valid bot predicate, the empty string is returned.
"""
try: return self._botPredicates[name]
except KeyError: return ""
def setBotPredicate(self, name, value):
"""Set the value of the specified bot predicate.
If name is not a valid bot predicate, it will be created.
"""
self._botPredicates[name] = value
# Clumsy hack: if updating the bot name, we must update the
# name in the brain as well
if name == "name":
self._brain.setBotName(self.getBotPredicate("name"))
def setTextEncoding(self, encoding):
"""Set the text encoding used when loading AIML files (Latin-1, UTF-8, etc.)."""
self._textEncoding = encoding
def loadSubs(self, filename):
"""Load a substitutions file.
The file must be in the Windows-style INI format (see the
standard ConfigParser module docs for information on this
format). Each section of the file is loaded into its own
substituter.
"""
inFile = file(filename)
parser = ConfigParser()
parser.readfp(inFile, filename)
inFile.close()
for s in parser.sections():
# Add a new WordSub instance for this section. If one already
# exists, delete it.
if self._subbers.has_key(s):
del(self._subbers[s])
self._subbers[s] = WordSub()
# iterate over the key,value pairs and add them to the subber
for k,v in parser.items(s):
self._subbers[s][k] = v
def _addSession(self, sessionID):
"""Create a new session with the specified ID string."""
if self._sessions.has_key(sessionID):
return
# Create the session.
self._sessions[sessionID] = {
# Initialize the special reserved predicates
self._inputHistory: [],
self._outputHistory: [],
self._inputStack: []
}
def _deleteSession(self, sessionID):
"""Delete the specified session."""
if self._sessions.has_key(sessionID):
_sessions.pop(sessionID)
def getSessionData(self, sessionID = None):
"""Return a copy of the session data dictionary for the
specified session.
If no sessionID is specified, return a dictionary containing
*all* of the individual session dictionaries.
"""
s = None
if sessionID is not None:
try: s = self._sessions[sessionID]
except KeyError: s = {}
else:
s = self._sessions
return copy.deepcopy(s)
def learn(self, filename):
"""Load and learn the contents of the specified AIML file.
If filename includes wildcard characters, all matching files
will be loaded and learned.
"""
for f in glob.glob(filename):
if self._verboseMode: print "Loading %s..." % f,
start = time.clock()
# Load and parse the AIML file.
parser = AimlParser.create_parser()
handler = parser.getContentHandler()
handler.setEncoding(self._textEncoding)
try: parser.parse(f)
except xml.sax.SAXParseException, msg:
err = "\nFATAL PARSE ERROR in file %s:\n%s\n" % (f,msg)
sys.stderr.write(err)
continue
# store the pattern/template pairs in the PatternMgr.
for key,tem in handler.categories.items():
self._brain.add(key,tem)
# Parsing was successful.
if self._verboseMode:
print "done (%.2f seconds)" % (time.clock() - start)
def respond(self, input, sessionID = _globalSessionID):
"""Return the Kernel's response to the input string."""
if len(input) == 0:
return ""
#ensure that input is a unicode string
try: input = input.decode(self._textEncoding, 'replace')
except UnicodeError: pass
except AttributeError: pass
# prevent other threads from stomping all over us.
self._respondLock.acquire()
# Add the session, if it doesn't already exist
self._addSession(sessionID)
# split the input into discrete sentences
sentences = Utils.sentences(input)
finalResponse = ""
for s in sentences:
# Add the input to the history list before fetching the
# response, so that <input/> tags work properly.
inputHistory = self.getPredicate(self._inputHistory, sessionID)
inputHistory.append(s)
while len(inputHistory) > self._maxHistorySize:
inputHistory.pop(0)
self.setPredicate(self._inputHistory, inputHistory, sessionID)
# Fetch the response
response = self._respond(s, sessionID)
# add the data from this exchange to the history lists
outputHistory = self.getPredicate(self._outputHistory, sessionID)
outputHistory.append(response)
while len(outputHistory) > self._maxHistorySize:
outputHistory.pop(0)
self.setPredicate(self._outputHistory, outputHistory, sessionID)
# append this response to the final response.
finalResponse += (response + " ")
finalResponse = finalResponse.strip()
assert(len(self.getPredicate(self._inputStack, sessionID)) == 0)
# release the lock and return
self._respondLock.release()
try: return finalResponse.encode(self._textEncoding)
except UnicodeError: return finalResponse
# This version of _respond() just fetches the response for some input.
# It does not mess with the input and output histories. Recursive calls
# to respond() spawned from tags like <srai> should call this function
# instead of respond().
def _respond(self, input, sessionID):
"""Private version of respond(), does the real work."""
if len(input) == 0:
return ""
# guard against infinite recursion
inputStack = self.getPredicate(self._inputStack, sessionID)
if len(inputStack) > self._maxRecursionDepth:
if self._verboseMode:
err = "WARNING: maximum recursion depth exceeded (input='%s')" % input.encode(self._textEncoding, 'replace')
sys.stderr.write(err)
return ""
# push the input onto the input stack
inputStack = self.getPredicate(self._inputStack, sessionID)
inputStack.append(input)
self.setPredicate(self._inputStack, inputStack, sessionID)
# run the input through the 'normal' subber
subbedInput = self._subbers['normal'].sub(input)
# fetch the bot's previous response, to pass to the match()
# function as 'that'.
outputHistory = self.getPredicate(self._outputHistory, sessionID)
try: that = outputHistory[-1]
except IndexError: that = ""
subbedThat = self._subbers['normal'].sub(that)
# fetch the current topic
topic = self.getPredicate("topic", sessionID)
subbedTopic = self._subbers['normal'].sub(topic)
# Determine the final response.
response = ""
elem = self._brain.match(subbedInput, subbedThat, subbedTopic)
if elem is None:
if self._verboseMode:
err = "WARNING: No match found for input: %s\n" % input.encode(self._textEncoding)
sys.stderr.write(err)
else:
# Process the element into a response string.
response += self._processElement(elem, sessionID).strip()
response += " "
response = response.strip()
# pop the top entry off the input stack.
inputStack = self.getPredicate(self._inputStack, sessionID)
inputStack.pop()
self.setPredicate(self._inputStack, inputStack, sessionID)
return response
def _processElement(self,elem, sessionID):
"""Process an AIML element.
The first item of the elem list is the name of the element's
XML tag. The second item is a dictionary containing any
attributes passed to that tag, and their values. Any further
items in the list are the elements enclosed by the current
element's begin and end tags; they are handled by each
element's handler function.
"""
try:
handlerFunc = self._elementProcessors[elem[0]]
except:
# Oops -- there's no handler function for this element
# type!
if self._verboseMode:
err = "WARNING: No handler found for <%s> element\n" % elem[0].encode(self._textEncoding, 'replace')
sys.stderr.write(err)
return ""
return handlerFunc(elem, sessionID)
######################################################
### Individual element-processing functions follow ###
######################################################
# <bot>
def _processBot(self, elem, sessionID):
"""Process a <bot> AIML element.
Required element attributes:
name: The name of the bot predicate to retrieve.
<bot> elements are used to fetch the value of global,
read-only "bot predicates." These predicates cannot be set
from within AIML; you must use the setBotPredicate() function.
"""
attrName = elem[1]['name']
return self.getBotPredicate(attrName)
# <condition>
def _processCondition(self, elem, sessionID):
"""Process a <condition> AIML element.
Optional element attributes:
name: The name of a predicate to test.
value: The value to test the predicate for.
<condition> elements come in three flavors. Each has different
attributes, and each handles their contents differently.
The simplest case is when the <condition> tag has both a 'name'
and a 'value' attribute. In this case, if the predicate
'name' has the value 'value', then the contents of the element
are processed and returned.
If the <condition> element has only a 'name' attribute, then
its contents are a series of <li> elements, each of which has
a 'value' attribute. The list is scanned from top to bottom
until a match is found. Optionally, the last <li> element can
have no 'value' attribute, in which case it is processed and
returned if no other match is found.
If the <condition> element has neither a 'name' nor a 'value'
attribute, then it behaves almost exactly like the previous
case, except that each <li> subelement (except the optional
last entry) must now include both 'name' and 'value'
attributes.
"""
attr = None
response = ""
attr = elem[1]
# Case #1: test the value of a specific predicate for a
# specific value.
if attr.has_key('name') and attr.has_key('value'):
val = self.getPredicate(attr['name'], sessionID)
if val == attr['value']:
for e in elem[2:]:
response += self._processElement(e,sessionID)
return response
else:
# Case #2 and #3: Cycle through <li> contents, testing a
# name and value pair for each one.
try:
name = None
if attr.has_key('name'):
name = attr['name']
# Get the list of <li> elemnents
listitems = []
for e in elem[2:]:
if e[0] == 'li':
listitems.append(e)
# if listitems is empty, return the empty string
if len(listitems) == 0:
return ""
# iterate through the list looking for a condition that
# matches.
foundMatch = False
for li in listitems:
try:
liAttr = li[1]
# if this is the last list item, it's allowed
# to have no attributes. We just skip it for now.
if len(liAttr.keys()) == 0 and li == listitems[-1]:
continue
# get the name of the predicate to test
liName = name
if liName == None:
liName = liAttr['name']
# get the value to check against
liValue = liAttr['value']
# do the test
if self.getPredicate(liName, sessionID) == liValue:
foundMatch = True
response += self._processElement(li,sessionID)
break
except:
# No attributes, no name/value attributes, no
# such predicate/session, or processing error.
if self._verboseMode: print "Something amiss -- skipping listitem", li
raise
if not foundMatch:
# Check the last element of listitems. If it has
# no 'name' or 'value' attribute, process it.
try:
li = listitems[-1]
liAttr = li[1]
if not (liAttr.has_key('name') or liAttr.has_key('value')):
response += self._processElement(li, sessionID)
except:
# listitems was empty, no attributes, missing
# name/value attributes, or processing error.
if self._verboseMode: print "error in default listitem"
raise
except:
# Some other catastrophic cataclysm
if self._verboseMode: print "catastrophic condition failure"
raise
return response
# <date>
def _processDate(self, elem, sessionID):
"""Process a <date> AIML element.
<date> elements resolve to the current date and time. The
AIML specification doesn't require any particular format for
this information, so I go with whatever's simplest.
"""
return time.asctime()
# <formal>
def _processFormal(self, elem, sessionID):
"""Process a <formal> AIML element.
<formal> elements process their contents recursively, and then
capitalize the first letter of each word of the result.
"""
response = ""
for e in elem[2:]:
response += self._processElement(e, sessionID)
return string.capwords(response)
# <gender>
def _processGender(self,elem, sessionID):
"""Process a <gender> AIML element.
<gender> elements process their contents, and then swap the
gender of any third-person singular pronouns in the result.
This subsitution is handled by the aiml.WordSub module.
"""
response = ""
for e in elem[2:]:
response += self._processElement(e, sessionID)
return self._subbers['gender'].sub(response)
# <get>
def _processGet(self, elem, sessionID):
"""Process a <get> AIML element.
Required element attributes:
name: The name of the predicate whose value should be
retrieved from the specified session and returned. If the
predicate doesn't exist, the empty string is returned.
<get> elements return the value of a predicate from the
specified session.
"""
return self.getPredicate(elem[1]['name'], sessionID)
# <gossip>
def _processGossip(self, elem, sessionID):
"""Process a <gossip> AIML element.
<gossip> elements are used to capture and store user input in
an implementation-defined manner, theoretically allowing the
bot to learn from the people it chats with. I haven't
descided how to define my implementation, so right now
<gossip> behaves identically to <think>.
"""
return self._processThink(elem, sessionID)
# <id>
def _processId(self, elem, sessionID):
""" Process an <id> AIML element.
<id> elements return a unique "user id" for a specific
conversation. In PyAIML, the user id is the name of the
current session.
"""
return sessionID
# <input>
def _processInput(self, elem, sessionID):
"""Process an <input> AIML element.
Optional attribute elements:
index: The index of the element from the history list to
return. 1 means the most recent item, 2 means the one
before that, and so on.
<input> elements return an entry from the input history for
the current session.
"""
inputHistory = self.getPredicate(self._inputHistory, sessionID)
try: index = int(elem[1]['index'])
except: index = 1
try: return inputHistory[-index]
except IndexError:
if self._verboseMode:
err = "No such index %d while processing <input> element.\n" % index
sys.stderr.write(err)
return ""
# <javascript>
def _processJavascript(self, elem, sessionID):
"""Process a <javascript> AIML element.
<javascript> elements process their contents recursively, and
then run the results through a server-side Javascript
interpreter to compute the final response. Implementations
are not required to provide an actual Javascript interpreter,
and right now PyAIML doesn't; <javascript> elements are behave
exactly like <think> elements.
"""
return self._processThink(elem, sessionID)
# <learn>
def _processLearn(self, elem, sessionID):
"""Process a <learn> AIML element.
<learn> elements process their contents recursively, and then
treat the result as an AIML file to open and learn.
"""
filename = ""
for e in elem[2:]:
filename += self._processElement(e, sessionID)
self.learn(filename)
return ""
# <li>
def _processLi(self,elem, sessionID):
"""Process an <li> AIML element.
Optional attribute elements:
name: the name of a predicate to query.
value: the value to check that predicate for.
<li> elements process their contents recursively and return
the results. They can only appear inside <condition> and
<random> elements. See _processCondition() and
_processRandom() for details of their usage.
"""
response = ""
for e in elem[2:]:
response += self._processElement(e, sessionID)
return response
# <lowercase>
def _processLowercase(self,elem, sessionID):
"""Process a <lowercase> AIML element.
<lowercase> elements process their contents recursively, and
then convert the results to all-lowercase.
"""
response = ""
for e in elem[2:]:
response += self._processElement(e, sessionID)
return string.lower(response)
# <person>
def _processPerson(self,elem, sessionID):
"""Process a <person> AIML element.
<person> elements process their contents recursively, and then
convert all pronouns in the results from 1st person to 2nd
person, and vice versa. This subsitution is handled by the
aiml.WordSub module.
If the <person> tag is used atomically (e.g. <person/>), it is
a shortcut for <person><star/></person>.
"""
response = ""
for e in elem[2:]:
response += self._processElement(e, sessionID)
if len(elem[2:]) == 0: # atomic <person/> = <person><star/></person>
response = self._processElement(['star',{}], sessionID)
return self._subbers['person'].sub(response)
# <person2>
def _processPerson2(self,elem, sessionID):
"""Process a <person2> AIML element.
<person2> elements process their contents recursively, and then
convert all pronouns in the results from 1st person to 3rd
person, and vice versa. This subsitution is handled by the
aiml.WordSub module.
If the <person2> tag is used atomically (e.g. <person2/>), it is
a shortcut for <person2><star/></person2>.
"""
response = ""
for e in elem[2:]:
response += self._processElement(e, sessionID)
if len(elem[2:]) == 0: # atomic <person2/> = <person2><star/></person2>
response = self._processElement(['star',{}], sessionID)
return self._subbers['person2'].sub(response)
# <random>
def _processRandom(self, elem, sessionID):
"""Process a <random> AIML element.
<random> elements contain zero or more <li> elements. If
none, the empty string is returned. If one or more <li>
elements are present, one of them is selected randomly to be
processed recursively and have its results returned. Only the
chosen <li> element's contents are processed. Any non-<li> contents are
ignored.
"""
listitems = []
for e in elem[2:]:
if e[0] == 'li':
listitems.append(e)
if len(listitems) == 0:
return ""
# select and process a random listitem.
random.shuffle(listitems)
return self._processElement(listitems[0], sessionID)
# <sentence>
def _processSentence(self,elem, sessionID):
"""Process a <sentence> AIML element.
<sentence> elements process their contents recursively, and
then capitalize the first letter of the results.
"""
response = ""
for e in elem[2:]:
response += self._processElement(e, sessionID)
try:
response = response.strip()
words = string.split(response, " ", 1)
words[0] = string.capitalize(words[0])
response = string.join(words)
return response
except IndexError: # response was empty
return ""
# <set>
def _processSet(self, elem, sessionID):
"""Process a <set> AIML element.
Required element attributes:
name: The name of the predicate to set.
<set> elements process their contents recursively, and assign the results to a predicate
(given by their 'name' attribute) in the current session. The contents of the element
are also returned.
"""
value = ""
for e in elem[2:]:
value += self._processElement(e, sessionID)
self.setPredicate(elem[1]['name'], value, sessionID)
return value
# <size>
def _processSize(self,elem, sessionID):
"""Process a <size> AIML element.
<size> elements return the number of AIML categories currently
in the bot's brain.
"""
return str(self.numCategories())
# <sr>
def _processSr(self,elem,sessionID):
"""Process an <sr> AIML element.
<sr> elements are shortcuts for <srai><star/></srai>.
"""
star = self._processElement(['star',{}], sessionID)
response = self._respond(star, sessionID)
return response
# <srai>
def _processSrai(self,elem, sessionID):
"""Process a <srai> AIML element.
<srai> elements recursively process their contents, and then
pass the results right back into the AIML interpreter as a new
piece of input. The results of this new input string are
returned.
"""
newInput = ""
for e in elem[2:]:
newInput += self._processElement(e, sessionID)
return self._respond(newInput, sessionID)
# <star>
def _processStar(self, elem, sessionID):
"""Process a <star> AIML element.
Optional attribute elements:
index: Which "*" character in the current pattern should
be matched?
<star> elements return the text fragment matched by the "*"
character in the current input pattern. For example, if the
input "Hello Tom Smith, how are you?" matched the pattern
"HELLO * HOW ARE YOU", then a <star> element in the template
would evaluate to "Tom Smith".
"""
try: index = int(elem[1]['index'])
except KeyError: index = 1
# fetch the user's last input
inputStack = self.getPredicate(self._inputStack, sessionID)
input = self._subbers['normal'].sub(inputStack[-1])
# fetch the Kernel's last response (for 'that' context)
outputHistory = self.getPredicate(self._outputHistory, sessionID)
try: that = self._subbers['normal'].sub(outputHistory[-1])
except: that = "" # there might not be any output yet
topic = self.getPredicate("topic", sessionID)
response = self._brain.star("star", input, that, topic, index)
return response
# <system>
def _processSystem(self,elem, sessionID):
"""Process a <system> AIML element.
<system> elements process their contents recursively, and then
attempt to execute the results as a shell command on the
server. The AIML interpreter blocks until the command is
complete, and then returns the command's output.
For cross-platform compatibility, any file paths inside
<system> tags should use Unix-style forward slashes ("/") as a
directory separator.
"""
# build up the command string
command = ""
for e in elem[2:]:
command += self._processElement(e, sessionID)
# normalize the path to the command. Under Windows, this
# switches forward-slashes to back-slashes; all system
# elements should use unix-style paths for cross-platform
# compatibility.
#executable,args = command.split(" ", 1)
#executable = os.path.normpath(executable)
#command = executable + " " + args
command = os.path.normpath(command)
# execute the command.
response = ""
try:
out = os.popen(command)
except RuntimeError, msg:
if self._verboseMode:
err = "WARNING: RuntimeError while processing \"system\" element:\n%s\n" % msg.encode(self._textEncoding, 'replace')
sys.stderr.write(err)
return "There was an error while computing my response. Please inform my botmaster."
time.sleep(0.01) # I'm told this works around a potential IOError exception.
for line in out:
response += line + "\n"
response = string.join(response.splitlines()).strip()
return response
# <template>
def _processTemplate(self,elem, sessionID):
"""Process a <template> AIML element.
<template> elements recursively process their contents, and
return the results. <template> is the root node of any AIML
response tree.
"""
response = ""
for e in elem[2:]:
response += self._processElement(e, sessionID)
return response
# text
def _processText(self,elem, sessionID):
"""Process a raw text element.
Raw text elements aren't really AIML tags. Text elements cannot contain
other elements; instead, the third item of the 'elem' list is a text
string, which is immediately returned. They have a single attribute,
automatically inserted by the parser, which indicates whether whitespace
in the text should be preserved or not.
"""
try: elem[2] + ""
except TypeError: raise TypeError, "Text element contents are not text"
# If the the whitespace behavior for this element is "default",
# we reduce all stretches of >1 whitespace characters to a single
# space. To improve performance, we do this only once for each
# text element encountered, and save the results for the future.
if elem[1]["xml:space"] == "default":
elem[2] = re.sub("\s+", " ", elem[2])
elem[1]["xml:space"] = "preserve"
return elem[2]
# <that>
def _processThat(self,elem, sessionID):
"""Process a <that> AIML element.
Optional element attributes:
index: Specifies which element from the output history to
return. 1 is the most recent response, 2 is the next most
recent, and so on.
<that> elements (when they appear inside <template> elements)
are the output equivilant of <input> elements; they return one
of the Kernel's previous responses.
"""
outputHistory = self.getPredicate(self._outputHistory, sessionID)
index = 1
try:
# According to the AIML spec, the optional index attribute
# can either have the form "x" or "x,y". x refers to how
# far back in the output history to go. y refers to which
# sentence of the specified response to return.
index = int(elem[1]['index'].split(',')[0])
except:
pass
try: return outputHistory[-index]
except IndexError:
if self._verboseMode:
err = "No such index %d while processing <that> element.\n" % index
sys.stderr.write(err)
return ""
# <thatstar>
def _processThatstar(self, elem, sessionID):
"""Process a <thatstar> AIML element.
Optional element attributes:
index: Specifies which "*" in the <that> pattern to match.
<thatstar> elements are similar to <star> elements, except
that where <star/> returns the portion of the input string
matched by a "*" character in the pattern, <thatstar/> returns
the portion of the previous input string that was matched by a
"*" in the current category's <that> pattern.
"""
try: index = int(elem[1]['index'])
except KeyError: index = 1
# fetch the user's last input
inputStack = self.getPredicate(self._inputStack, sessionID)
input = self._subbers['normal'].sub(inputStack[-1])
# fetch the Kernel's last response (for 'that' context)
outputHistory = self.getPredicate(self._outputHistory, sessionID)
try: that = self._subbers['normal'].sub(outputHistory[-1])
except: that = "" # there might not be any output yet
topic = self.getPredicate("topic", sessionID)
response = self._brain.star("thatstar", input, that, topic, index)
return response
# <think>
def _processThink(self,elem, sessionID):
"""Process a <think> AIML element.
<think> elements process their contents recursively, and then
discard the results and return the empty string. They're
useful for setting predicates and learning AIML files without
generating any output.
"""
for e in elem[2:]:
self._processElement(e, sessionID)
return ""
# <topicstar>
def _processTopicstar(self, elem, sessionID):
"""Process a <topicstar> AIML element.
Optional element attributes:
index: Specifies which "*" in the <topic> pattern to match.
<topicstar> elements are similar to <star> elements, except
that where <star/> returns the portion of the input string
matched by a "*" character in the pattern, <topicstar/>
returns the portion of current topic string that was matched
by a "*" in the current category's <topic> pattern.
"""
try: index = int(elem[1]['index'])
except KeyError: index = 1
# fetch the user's last input
inputStack = self.getPredicate(self._inputStack, sessionID)
input = self._subbers['normal'].sub(inputStack[-1])
# fetch the Kernel's last response (for 'that' context)
outputHistory = self.getPredicate(self._outputHistory, sessionID)
try: that = self._subbers['normal'].sub(outputHistory[-1])
except: that = "" # there might not be any output yet
topic = self.getPredicate("topic", sessionID)
response = self._brain.star("topicstar", input, that, topic, index)
return response
# <uppercase>
def _processUppercase(self,elem, sessionID):
"""Process an <uppercase> AIML element.
<uppercase> elements process their contents recursively, and
return the results with all lower-case characters converted to
upper-case.
"""
response = ""
for e in elem[2:]:
response += self._processElement(e, sessionID)
return string.upper(response)
# <version>
def _processVersion(self,elem, sessionID):
"""Process a <version> AIML element.
<version> elements return the version number of the AIML
interpreter.
"""
return self.version()
##################################################
### Self-test functions follow ###
##################################################
def _testTag(kern, tag, input, outputList):
"""Tests 'tag' by feeding the Kernel 'input'. If the result
matches any of the strings in 'outputList', the test passes.
"""
global _numTests, _numPassed
_numTests += 1
print "Testing <" + tag + ">:",
response = kern.respond(input).decode(kern._textEncoding)
if response in outputList:
print "PASSED"
_numPassed += 1
return True
else:
print "FAILED (response: '%s')" % response.encode(kern._textEncoding, 'replace')
return False
if __name__ == "__main__":
# Run some self-tests
k = Kernel()
k.bootstrap(learnFiles="self-test.aiml")
global _numTests, _numPassed
_numTests = 0
_numPassed = 0
_testTag(k, 'bot', 'test bot', ["My name is Nameless"])
k.setPredicate('gender', 'male')
_testTag(k, 'condition test #1', 'test condition name value', ['You are handsome'])
k.setPredicate('gender', 'female')
_testTag(k, 'condition test #2', 'test condition name value', [''])
_testTag(k, 'condition test #3', 'test condition name', ['You are beautiful'])
k.setPredicate('gender', 'robot')
_testTag(k, 'condition test #4', 'test condition name', ['You are genderless'])
_testTag(k, 'condition test #5', 'test condition', ['You are genderless'])
k.setPredicate('gender', 'male')
_testTag(k, 'condition test #6', 'test condition', ['You are handsome'])
# the date test will occasionally fail if the original and "test"
# times cross a second boundary. There's no good way to avoid
# this problem and still do a meaningful test, so we simply
# provide a friendly message to be printed if the test fails.
date_warning = """
NOTE: the <date> test will occasionally report failure even if it
succeeds. So long as the response looks like a date/time string,
there's nothing to worry about.
"""
if not _testTag(k, 'date', 'test date', ["The date is %s" % time.asctime()]):
print date_warning
_testTag(k, 'formal', 'test formal', ["Formal Test Passed"])
_testTag(k, 'gender', 'test gender', ["He'd told her he heard that her hernia is history"])
_testTag(k, 'get/set', 'test get and set', ["I like cheese. My favorite food is cheese"])
_testTag(k, 'gossip', 'test gossip', ["Gossip is not yet implemented"])
_testTag(k, 'id', 'test id', ["Your id is _global"])
_testTag(k, 'input', 'test input', ['You just said: test input'])
_testTag(k, 'javascript', 'test javascript', ["Javascript is not yet implemented"])
_testTag(k, 'lowercase', 'test lowercase', ["The Last Word Should Be lowercase"])
_testTag(k, 'person', 'test person', ['HE think i knows that my actions threaten him and his.'])
_testTag(k, 'person2', 'test person2', ['YOU think me know that my actions threaten you and yours.'])
_testTag(k, 'person2 (no contents)', 'test person2 I Love Lucy', ['YOU Love Lucy'])
_testTag(k, 'random', 'test random', ["response #1", "response #2", "response #3"])
_testTag(k, 'random empty', 'test random empty', ["Nothing here!"])
_testTag(k, 'sentence', "test sentence", ["My first letter should be capitalized."])
_testTag(k, 'size', "test size", ["I've learned %d categories" % k.numCategories()])
_testTag(k, 'sr', "test sr test srai", ["srai results: srai test passed"])
_testTag(k, 'sr nested', "test nested sr test srai", ["srai results: srai test passed"])
_testTag(k, 'srai', "test srai", ["srai test passed"])
_testTag(k, 'srai infinite', "test srai infinite", [""])
_testTag(k, 'star test #1', 'You should test star begin', ['Begin star matched: You should'])
_testTag(k, 'star test #2', 'test star creamy goodness middle', ['Middle star matched: creamy goodness'])
_testTag(k, 'star test #3', 'test star end the credits roll', ['End star matched: the credits roll'])
_testTag(k, 'star test #4', 'test star having multiple stars in a pattern makes me extremely happy',
['Multiple stars matched: having, stars in a pattern, extremely happy'])
_testTag(k, 'system', "test system", ["The system says hello!"])
_testTag(k, 'that test #1', "test that", ["I just said: The system says hello!"])
_testTag(k, 'that test #2', "test that", ["I have already answered this question"])
_testTag(k, 'thatstar test #1', "test thatstar", ["I say beans"])
_testTag(k, 'thatstar test #2', "test thatstar", ["I just said \"beans\""])
_testTag(k, 'thatstar test #3', "test thatstar multiple", ['I say beans and franks for everybody'])
_testTag(k, 'thatstar test #4', "test thatstar multiple", ['Yes, beans and franks for all!'])
_testTag(k, 'think', "test think", [""])
k.setPredicate("topic", "fruit")
_testTag(k, 'topic', "test topic", ["We were discussing apples and oranges"])
k.setPredicate("topic", "Soylent Green")
_testTag(k, 'topicstar test #1', 'test topicstar', ["Solyent Green is made of people!"])
k.setPredicate("topic", "Soylent Ham and Cheese")
_testTag(k, 'topicstar test #2', 'test topicstar multiple', ["Both Soylents Ham and Cheese are made of people!"])
_testTag(k, 'unicode support', u"ÔÇÉϺÃ", [u"Hey, you speak Chinese! ÔÇÉϺÃ"])
_testTag(k, 'uppercase', 'test uppercase', ["The Last Word Should Be UPPERCASE"])
_testTag(k, 'version', 'test version', ["PyAIML is version %s" % k.version()])
_testTag(k, 'whitespace preservation', 'test whitespace', ["Extra Spaces\n Rule! (but not in here!) But Here They Do!"])
# Report test results
print "--------------------"
if _numTests == _numPassed:
print "%d of %d tests passed!" % (_numPassed, _numTests)
else:
print "%d of %d tests passed (see above for detailed errors)" % (_numPassed, _numTests)
# Run an interactive interpreter
#print "\nEntering interactive mode (ctrl-c to exit)"
#while True: print k.respond(raw_input("> "))
|