This file is indexed.

/usr/share/python-ase/doc/ase/atoms.rst is in python-ase-doc 3.12.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
.. module:: ase.atoms
.. module:: ase

================
The Atoms object
================

The :class:`Atoms` object is a collection of atoms.  Here
is how to define a CO molecule::

  from ase import Atoms
  d = 1.1
  co = Atoms('CO', positions=[(0, 0, 0), (0, 0, d)])

Here, the first argument specifies the type of the atoms and we used
the ``positions`` keywords to specify their positions.  Other
possible keywords are: ``numbers``, ``tags``, ``momenta``, ``masses``,
``magmoms`` and ``charges``.

Here is how you could make an infinite gold wire with a bond length of
2.9 Å::

  from ase import Atoms
  d = 2.9
  L = 10.0
  wire = Atoms('Au',
               positions=[(0, L / 2, L / 2)],
               cell=(d, L, L),
               pbc=(1, 0, 0))

.. image:: Au-wire.png

Here, two more optional keyword arguments were used:

``cell``: Unit cell size
  This can be a sequence of three numbers for
  an orthorhombic unit cell or three by three numbers for a general
  unit cell (a sequence of three sequences of three numbers) or six numbers
  (three legths and three angles in degrees).  The default value is
  *[1.0, 1.0, 1.0]*.

``pbc``: Periodic boundary conditions
  The default value is *False* - a value of *True* would give
  periodic boundary conditions along all three axes.  It is possible
  to give a sequence of three booleans to specify periodicity along
  specific axes.

You can also use the following methods to work with the unit cell and
the boundary conditions: :meth:`~Atoms.set_pbc`,
:meth:`~Atoms.set_cell`, :meth:`~Atoms.get_cell`,
and :meth:`~Atoms.get_pbc`.


Working with the array methods of Atoms objects
===============================================

Like with a single :class:`~ase.atom.Atom` the properties of a collection of atoms
can be accessed and changed with get- and set-methods. For example
the positions of the atoms can be addressed as

>>> a = Atoms('N3', [(0, 0, 0), (1, 0, 0), (0, 0, 1)])
>>> a.get_positions()
array([[ 0.,  0.,  0.],
       [ 1.,  0.,  0.],
       [ 0.,  0.,  1.]])
>>> a.set_positions([(2, 0, 0), (0, 2, 2), (2, 2, 0)])
>>> a.get_positions()
array([[ 2.,  0.,  0.],
       [ 0.,  2.,  2.],
       [ 2.,  2.,  0.]])

Here is the full list of the get/set methods operating on all the
atoms at once.  The get methods return an array of quantities, one for
each atom; the set methods take similar arrays.
E.g. :meth:`~Atoms.get_positions` return N * 3 numbers,
:meth:`~Atoms.get_atomic_numbers` return N integers.

*These methods return copies of the internal arrays, it is thus safe
to modify the returned arrays.*

.. list-table::

  * - :meth:`~Atoms.get_atomic_numbers`
    - :meth:`~Atoms.set_atomic_numbers`
  * - :meth:`~Atoms.get_charges`
    - :meth:`~Atoms.set_charges`
  * - :meth:`~Atoms.get_chemical_symbols`
    - :meth:`~Atoms.set_chemical_symbols`
  * - :meth:`~Atoms.get_initial_magnetic_moments`
    - :meth:`~Atoms.set_initial_magnetic_moments`
  * - :meth:`~Atoms.get_magnetic_moments`
    -
  * - :meth:`~Atoms.get_masses`
    - :meth:`~Atoms.set_masses`
  * - :meth:`~Atoms.get_momenta`
    - :meth:`~Atoms.set_momenta`
  * - :meth:`~Atoms.get_forces`
    -
  * - :meth:`~Atoms.get_positions`
    - :meth:`~Atoms.set_positions`
  * - :meth:`~Atoms.get_potential_energies`
    -
  * - :meth:`~Atoms.get_scaled_positions`
    - :meth:`~Atoms.set_scaled_positions`
  * - :meth:`~Atoms.get_stresses`
    -
  * - :meth:`~Atoms.get_tags`
    - :meth:`~Atoms.set_tags`
  * - :meth:`~Atoms.get_velocities`
    - :meth:`~Atoms.set_velocities`

There are also a number of get/set methods that operate on quantities
common to all the atoms or defined for the collection of atoms:

.. list-table::

  * - :meth:`~Atoms.get_calculator`
    - :meth:`~Atoms.set_calculator`
  * - :meth:`~Atoms.get_cell`
    - :meth:`~Atoms.set_cell`
  * - :meth:`~Atoms.get_cell_lengths_and_angles`
    -
  * - :meth:`~Atoms.get_center_of_mass`
    -
  * - :meth:`~Atoms.get_kinetic_energy`
    -
  * - :meth:`~Atoms.get_magnetic_moment`
    -
  * - :meth:`~Atoms.get_number_of_atoms`
    -
  * - :meth:`~Atoms.get_pbc`
    - :meth:`~Atoms.set_pbc`
  * - :meth:`~Atoms.get_potential_energy`
    -
  * - :meth:`~Atoms.get_stress`
    -
  * - :meth:`~Atoms.get_total_energy`
    -
  * - :meth:`~Atoms.get_volume`
    -


Unit cell and boundary conditions
=================================

The :class:`Atoms` object holds a unit cell which by
default is the 3x3 unit matrix as can be seen from

>>> a.get_cell()
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])


The cell can be defined or changed using the
:meth:`~Atoms.set_cell` method. Changing the unit cell
does per default not move the atoms:

>>> a.set_cell(2 * identity(3))
>>> a.get_cell()
array([[ 2.,  0.,  0.],
       [ 0.,  2.,  0.],
       [ 0.,  0.,  2.]])
>>> a.get_positions()
array([[ 2.,  0.,  0.],
       [ 1.,  1.,  0.],
       [ 2.,  2.,  0.]])

However if we set ``scale_atoms=True`` the atomic positions are scaled with
the unit cell:

>>> a.set_cell(identity(3), scale_atoms=True)
>>> a.get_positions()
array([[ 1. ,  0. ,  0. ],
       [ 0.5,  0.5,  0. ],
       [ 1. ,  1. ,  0. ]])

The :meth:`~Atoms.set_pbc` method specifies whether
periodic boundary conditions are to be used in the directions of the
three vectors of the unit cell.  A slab calculation with periodic
boundary conditions in *x* and *y* directions and free boundary
conditions in the *z* direction is obtained through

>>> a.set_pbc((True, True, False))


.. _atoms_special_attributes:

Special attributes
==================

It is also possible to work directly with the attributes
:attr:`~Atoms.positions`, :attr:`~Atoms.numbers`,
:attr:`~Atoms.pbc` and :attr:`~Atoms.cell`.  Here
we change the position of the 2nd atom (which has count number 1
because Python starts counting at zero) and the type of the first
atom:

>>> a.positions[1] = (1, 1, 0)
>>> a.get_positions()
array([[2., 0., 0.],
      [1., 1., 0.],
      [2., 2., 0.]])
>>> a.positions
array([[2., 0., 0.],
       [1., 1., 0.],
       [2., 2., 0.]])
>>> a.numbers
array([7, 7, 7])
>>> a.numbers[0] = 13
>>> a.get_chemical_symbols()
['Al', 'N', 'N']

Check for periodic boundary conditions:

>>> a.pbc  # equivalent to a.get_pbc()
array([False, False, False], dtype=bool)
>>> a.pbc.any()
False
>>> a.pbc[2] = 1
>>> a.pbc
array([False, False,  True], dtype=bool)

Hexagonal unit cell:

>>> a.cell = [2.5, 2.5, 15, 90, 90, 120]


Adding a calculator
===================

A calculator can be attached to the atoms with the purpose
of calculating energies and forces on the atoms. ASE works with many
different :mod:`ase.calculators`.

A calculator object *calc* is attached to the atoms like this:

>>> a.set_calculator(calc)

After the calculator has been appropriately setup the energy of the
atoms can be obtained through

>>> a.get_potential_energy()

The term "potential energy" here means for example the total energy of
a DFT calculation, which includes both kinetic, electrostatic, and
exchange-correlation energy for the electrons. The reason it is called
potential energy is that the atoms might also have a kinetic energy
(from the moving nuclei) and that is obtained with

>>> a.get_kinetic_energy()

In case of a DFT calculator, it is up to the user to check exactly what
the :meth:`~Atoms.get_potential_energy` method returns. For
example it may be the result of a calculation with a finite
temperature smearing of the occupation numbers extrapolated to zero
temperature.  More about this can be found for the different
:mod:`ase.calculators`.

The following methods can only be called if a calculator is present:

* :meth:`~Atoms.get_potential_energy`
* :meth:`~Atoms.get_potential_energies`
* :meth:`~Atoms.get_forces`
* :meth:`~Atoms.get_stress`
* :meth:`~Atoms.get_stresses`
* :meth:`~Atoms.get_total_energy`
* :meth:`~Atoms.get_magnetic_moments`
* :meth:`~Atoms.get_magnetic_moment`

Not all of these methods are supported by all calculators.


List-methods
============

.. list-table::

  * - method
    - example
  * - ``+``
    - ``wire2 = wire + co``
  * - ``+=``, :meth:`~Atoms.extend`
    - ``wire += co``

      ``wire.extend(co)``
  * - :meth:`~Atoms.append`
    - ``wire.append(Atom('H'))``
  * - ``*``
    - ``wire3 = wire * (3, 1, 1)``
  * - ``*=``, :meth:`~Atoms.repeat`
    - ``wire *= (3, 1, 1)``

      ``wire.repeat((3, 1, 1))``
  * - ``len``
    - ``len(co)``
  * - ``del``
    - ``del wire3[0]``

      ``del wire3[[1,3]]``
  * - :meth:`~Atoms.pop`
    - ``oxygen = wire2.pop()``


Note that the ``del`` method can be used with the more powerful numpy-style indexing, as in the second example above. This can be combined with python list comprehension in order to selectively delete atoms within an ASE Atoms object. For example, the below code creates an ethanol molecule and subsequently strips all the hydrogen atoms from it::

  from ase.build import molecule
  atoms = molecule('CH3CH2OH')
  del atoms[[atom.index for atom in atoms if atom.symbol=='H']]


Other methods
=============

* :meth:`~Atoms.center`
* :meth:`~Atoms.wrap`
* :meth:`~Atoms.translate`
* :meth:`~Atoms.rotate`
* :meth:`~Atoms.rotate_euler`
* :meth:`~Atoms.get_dihedral`
* :meth:`~Atoms.set_dihedral`
* :meth:`~Atoms.rotate_dihedral`
* :meth:`~Atoms.rattle`
* :meth:`~Atoms.set_constraint`
* :meth:`~Atoms.set_distance`
* :meth:`~Atoms.copy`
* :meth:`~Atoms.get_center_of_mass`
* :meth:`~Atoms.get_distance`
* :meth:`~Atoms.get_distances`
* :meth:`~Atoms.get_all_distances`
* :meth:`~Atoms.get_volume`
* :meth:`~Atoms.has`
* :meth:`~Atoms.edit`



List of all Methods
===================

.. autoclass:: Atoms
   :members: