This file is indexed.

/usr/lib/python2.7/dist-packages/ase/dimer.py is in python-ase 3.12.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
"""Minimum mode follower for finding saddle points in an unbiased way.

There is, currently, only one implemented method: The Dimer method.

"""

import sys
import time
import warnings

import numpy as np

from ase.optimize.optimize import Optimizer
from math import cos, sin, atan, tan, degrees, pi, sqrt
from ase.parallel import rank, size, world
from ase.calculators.singlepoint import SinglePointCalculator

# Handy vector methods
norm = np.linalg.norm


def normalize(vector):
    """Create a unit vector along *vector*"""
    return vector / norm(vector)

    
def parallel_vector(vector, base):
    """Extract the components of *vector* that are parallel to *base*"""
    return np.vdot(vector, base) * base

    
def perpendicular_vector(vector, base):
    """Remove the components of *vector* that are parallel to *base*"""
    return vector - parallel_vector(vector, base)

    
def rotate_vectors(v1i, v2i, angle):
    """Rotate vectors *v1i* and *v2i* by *angle*"""
    cAng = cos(angle)
    sAng = sin(angle)
    v1o = v1i * cAng + v2i * sAng
    v2o = v2i * cAng - v1i * sAng
    # Ensure the length of the input and output vectors is equal
    return normalize(v1o) * norm(v1i), normalize(v2o) * norm(v2i)


class DimerEigenmodeSearch:
    """An implementation of the Dimer's minimum eigenvalue mode search.

    This class implements the rotational part of the dimer saddle point
    searching method.

    Parameters:

    atoms: MinModeAtoms object
        MinModeAtoms is an extension to the Atoms object, which includes
        information about the lowest eigenvalue mode.
    control: DimerControl object
        Contains the parameters necessary for the eigenmode search.
        If no control object is supplied a default DimerControl
        will be created and used.
    basis: list of xyz-values
        Eigenmode. Must be an ndarray of shape (n, 3).
        It is possible to constrain the eigenmodes to be orthogonal
        to this given eigenmode.

    Notes:

    The code is inspired, with permission, by code written by the Henkelman
    group, which can be found at http://theory.cm.utexas.edu/vtsttools/code/

    References:

    * Henkelman and Jonsson, JCP 111, 7010 (1999)
    * Olsen, Kroes, Henkelman, Arnaldsson, and Jonsson, JCP 121,
      9776 (2004).
    * Heyden, Bell, and Keil, JCP 123, 224101 (2005).
    * Kastner and Sherwood, JCP 128, 014106 (2008).

    """
    def __init__(self, atoms, control=None, eigenmode=None, basis=None,
                 **kwargs):
        if hasattr(atoms, 'get_eigenmode'):
            self.atoms = atoms
        else:
            e = 'The atoms object must be a MinModeAtoms object'
            raise TypeError(e)
        self.basis = basis

        if eigenmode is None:
            self.eigenmode = self.atoms.get_eigenmode()
        else:
            self.eigenmode = eigenmode

        if control is None:
            self.control = DimerControl(**kwargs)
            w = 'Missing control object in ' + self.__class__.__name__ + \
                '. Using default: DimerControl()'
            warnings.warn(w, UserWarning)
            if self.control.logfile is not None:
                self.control.logfile.write('DIM:WARN: ' + w + '\n')
                self.control.logfile.flush()
        else:
            self.control = control
            # kwargs must be empty if a control object is supplied
            for key in kwargs:
                e = '__init__() got an unexpected keyword argument \'%s\'' % \
                    (key)
                raise TypeError(e)

        self.dR = self.control.get_parameter('dimer_separation')
        self.logfile = self.control.get_logfile()

    def converge_to_eigenmode(self):
        """Perform an eigenmode search."""
        self.set_up_for_eigenmode_search()
        stoprot = False

        # Load the relevant parameters from control
        f_rot_min = self.control.get_parameter('f_rot_min')
        f_rot_max = self.control.get_parameter('f_rot_max')
        trial_angle = self.control.get_parameter('trial_angle')
        max_num_rot = self.control.get_parameter('max_num_rot')
        extrapolate = self.control.get_parameter('extrapolate_forces')

        while not stoprot:
            if self.forces1E is None:
                self.update_virtual_forces()
            else:
                self.update_virtual_forces(extrapolated_forces=True)
            self.forces1A = self.forces1
            self.update_curvature()
            f_rot_A = self.get_rotational_force()

            # Pre rotation stop criteria
            if norm(f_rot_A) <= f_rot_min:
                self.log(f_rot_A, None)
                stoprot = True
            else:
                n_A = self.eigenmode
                rot_unit_A = normalize(f_rot_A)

                # Get the curvature and its derivative
                c0 = self.get_curvature()
                c0d = np.vdot((self.forces2 - self.forces1), rot_unit_A) / \
                      self.dR

                # Trial rotation (no need to store the curvature)
                # NYI variable trial angles from [3]
                n_B, rot_unit_B = rotate_vectors(n_A, rot_unit_A, trial_angle)
                self.eigenmode = n_B
                self.update_virtual_forces()
                self.forces1B = self.forces1

                # Get the curvature's derivative
                c1d = np.vdot((self.forces2 - self.forces1), rot_unit_B) / \
                      self.dR

                # Calculate the Fourier coefficients
                a1 = c0d * cos(2 * trial_angle) - c1d / \
                     (2 * sin(2 * trial_angle))
                b1 = 0.5 * c0d
                a0 = 2 * (c0 - a1)

                # Estimate the rotational angle
                rotangle = atan(b1 / a1) / 2.0

                # Make sure that you didn't find a maximum
                cmin = a0 / 2.0 + a1 * cos(2 * rotangle) + \
                       b1 * sin(2 * rotangle)
                if c0 < cmin:
                    rotangle += pi / 2.0

                # Rotate into the (hopefully) lowest eigenmode
                # NYI Conjugate gradient rotation
                n_min, dummy = rotate_vectors(n_A, rot_unit_A, rotangle)
                self.update_eigenmode(n_min)

                # Store the curvature estimate instead of the old curvature
                self.update_curvature(cmin)

                self.log(f_rot_A, rotangle)

                # Force extrapolation scheme from [4]
                if extrapolate:
                    self.forces1E = sin(trial_angle - rotangle) / \
                        sin(trial_angle) * self.forces1A + sin(rotangle) / \
                        sin(trial_angle) * self.forces1B + \
                        (1 - cos(rotangle) - sin(rotangle) * \
                        tan(trial_angle / 2.0)) * self.forces0
                else:
                    self.forces1E = None

            # Post rotation stop criteria
            if not stoprot:
                if self.control.get_counter('rotcount') >= max_num_rot:
                    stoprot = True
                elif norm(f_rot_A) <= f_rot_max:
                    stoprot = True

    def log(self, f_rot_A, angle):
        """Log each rotational step."""
        # NYI Log for the trial angle
        if self.logfile is not None:
            if angle:
                l = 'DIM:ROT: %7d %9d %9.4f %9.4f %9.4f\n' % \
                    (self.control.get_counter('optcount'),
                    self.control.get_counter('rotcount'),
                    self.get_curvature(), degrees(angle), norm(f_rot_A))
            else:
                l = 'DIM:ROT: %7d %9d %9.4f %9s %9.4f\n' % \
                    (self.control.get_counter('optcount'),
                    self.control.get_counter('rotcount'),
                    self.get_curvature(), '---------', norm(f_rot_A))
            self.logfile.write(l)
            self.logfile.flush()

    def get_rotational_force(self):
        """Calculate the rotational force that acts on the dimer."""
        rot_force = perpendicular_vector((self.forces1 - self.forces2),
                    self.eigenmode) / (2.0 * self.dR)
        if self.basis is not None:
            if len(self.basis) == len(self.atoms) and len(self.basis[0]) == \
               3 and isinstance(self.basis[0][0], float):
                rot_force = perpendicular_vector(rot_force, self.basis)
            else:
                for base in self.basis:
                    rot_force = perpendicular_vector(rot_force, base)
        return rot_force

    def update_curvature(self, curv = None):
        """Update the curvature in the MinModeAtoms object."""
        if curv:
            self.curvature = curv
        else:
            self.curvature = np.vdot((self.forces2 - self.forces1),
                             self.eigenmode) / (2.0 * self.dR)

    def update_eigenmode(self, eigenmode):
        """Update the eigenmode in the MinModeAtoms object."""
        self.eigenmode = eigenmode
        self.update_virtual_positions()
        self.control.increment_counter('rotcount')

    def get_eigenmode(self):
        """Returns the current eigenmode."""
        return self.eigenmode

    def get_curvature(self):
        """Returns the curvature along the current eigenmode."""
        return self.curvature

    def get_control(self):
        """Return the control object."""
        return self.control

    def update_center_forces(self):
        """Get the forces at the center of the dimer."""
        self.atoms.set_positions(self.pos0)
        self.forces0 = self.atoms.get_forces(real = True)
        self.energy0 = self.atoms.get_potential_energy()

    def update_virtual_forces(self, extrapolated_forces = False):
        """Get the forces at the endpoints of the dimer."""
        self.update_virtual_positions()

        # Estimate / Calculate the forces at pos1
        if extrapolated_forces:
            self.forces1 = self.forces1E.copy()
        else:
            self.forces1 = self.atoms.get_forces(real = True, pos = self.pos1)

        # Estimate / Calculate the forces at pos2
        if self.control.get_parameter('use_central_forces'):
            self.forces2 = 2 * self.forces0 - self.forces1
        else:
            self.forces2 = self.atoms.get_forces(real = True, pos = self.pos2)

    def update_virtual_positions(self):
        """Update the end point positions."""
        self.pos1 = self.pos0 + self.eigenmode * self.dR
        self.pos2 = self.pos0 - self.eigenmode * self.dR

    def set_up_for_eigenmode_search(self):
        """Before eigenmode search, prepare for rotation."""
        self.pos0 = self.atoms.get_positions()
        self.update_center_forces()
        self.update_virtual_positions()
        self.control.reset_counter('rotcount')
        self.forces1E = None

    def set_up_for_optimization_step(self):
        """At the end of rotation, prepare for displacement of the dimer."""
        self.atoms.set_positions(self.pos0)
        self.forces1E = None

class MinModeControl:
    """A parent class for controlling minimum mode saddle point searches.

    Method specific control classes inherit this one. The only thing
    inheriting classes need to implement are the log() method and
    the *parameters* class variable with default values for ALL
    parameters needed by the method in question.
    When instantiating control classes default parameter values can
    be overwritten.

    """
    parameters = {}
    def __init__(self, logfile = '-', eigenmode_logfile=None, **kwargs):
        # Overwrite the defaults with the input parameters given
        for key in kwargs:
            if not key in self.parameters.keys():
                e = 'Invalid parameter >>%s<< with value >>%s<< in %s' % \
                    (key, str(kwargs[key]), self.__class__.__name__)
                raise ValueError(e)
            else:
                self.set_parameter(key, kwargs[key], log = False)

        # Initialize the log files
        self.initialize_logfiles(logfile, eigenmode_logfile)

        # Initialize the counters
        self.counters = {'forcecalls': 0, 'rotcount': 0, 'optcount': 0}

        self.log()

    def initialize_logfiles(self, logfile=None, eigenmode_logfile=None):
        """Set up the log files."""
        # Set up the regular logfile
        if rank != 0:
            logfile = None
        elif isinstance(logfile, str):
            if logfile == '-':
                logfile = sys.stdout
            else:
                logfile = open(logfile, 'a')
        self.logfile = logfile

        # Set up the eigenmode logfile
        if eigenmode_logfile:
            if rank != 0:
                eigenmode_logfile = None
            elif isinstance(eigenmode_logfile, str):
                if eigenmode_logfile == '-':
                    eigenmode_logfile = sys.stdout
                else:
                    eigenmode_logfile = open(eigenmode_logfile, 'a')
        self.eigenmode_logfile = eigenmode_logfile

    def log(self, parameter=None):
        """Log the parameters of the eigenmode search."""
        pass

    def set_parameter(self, parameter, value, log=True):
        """Change a parameter's value."""
        if not parameter in self.parameters.keys():
            e = 'Invalid parameter >>%s<< with value >>%s<<' % \
                (parameter, str(value))
            raise ValueError(e)
        self.parameters[parameter] = value
        if log:
            self.log(parameter)

    def get_parameter(self, parameter):
        """Returns the value of a parameter."""
        if not parameter in self.parameters.keys():
            e = 'Invalid parameter >>%s<<' % \
                (parameter)
            raise ValueError(e)
        return self.parameters[parameter]

    def get_logfile(self):
        """Returns the log file."""
        return self.logfile

    def get_eigenmode_logfile(self):
        """Returns the eigenmode log file."""
        return self.eigenmode_logfile

    def get_counter(self, counter):
        """Returns a given counter."""
        return self.counters[counter]

    def increment_counter(self, counter):
        """Increment a given counter."""
        self.counters[counter] += 1

    def reset_counter(self, counter):
        """Reset a given counter."""
        self.counters[counter] = 0

    def reset_all_counters(self):
        """Reset all counters."""
        for key in self.counters.keys():
            self.counters[key] = 0

class DimerControl(MinModeControl):
    """A class that takes care of the parameters needed for a Dimer search.

    Parameters:

    eigenmode_method: str
        The name of the eigenmode search method.
    f_rot_min: float
        Size of the rotational force under which no rotation will be
        performed.
    f_rot_max: float
        Size of the rotational force under which only one rotation will be
        performed.
    max_num_rot: int
        Maximum number of rotations per optimizer step.
    trial_angle: float
        Trial angle for the finite difference estimate of the rotational
        angle in radians.
    trial_trans_step: float
        Trial step size for the MinModeTranslate optimizer.
    maximum_translation: float
        Maximum step size and forced step size when the curvature is still
        positive for the MinModeTranslate optimizer.
    cg_translation: bool
        Conjugate Gradient for the MinModeTranslate optimizer.
    use_central_forces: bool
        Only calculate the forces at one end of the dimer and extrapolate
        the forces to the other.
    dimer_separation: float
        Separation of the dimer's images.
    initial_eigenmode_method: str
        How to construct the initial eigenmode of the dimer. If an eigenmode
        is given when creating the MinModeAtoms object, this will be ignored.
        Possible choices are: 'gauss' and 'displacement'
    extrapolate_forces: bool
        When more than one rotation is performed, an extrapolation scheme can
        be used to reduce the number of force evaluations.
    displacement_method: str
        How to displace the atoms. Possible choices are 'gauss' and 'vector'.
    gauss_std: float
        The standard deviation of the gauss curve used when doing random
        displacement.
    order: int
        How many lowest eigenmodes will be inverted.
    mask: list of bool
        Which atoms will be moved during displacement.
    displacement_center: int or [float, float, float]
        The center of displacement, nearby atoms will be displaced.
    displacement_radius: float
        When choosing which atoms to displace with the *displacement_center*
        keyword, this decides how many nearby atoms to displace.
    number_of_displacement_atoms: int
        The amount of atoms near *displacement_center* to displace.

    """
    # Default parameters for the Dimer eigenmode search
    parameters = {'eigenmode_method': 'dimer',
                  'f_rot_min': 0.1,
                  'f_rot_max': 1.00,
                  'max_num_rot': 1,
                  'trial_angle': pi / 4.0,
                  'trial_trans_step': 0.001,
                  'maximum_translation': 0.1,
                  'cg_translation': True,
                  'use_central_forces': True,
                  'dimer_separation': 0.0001,
                  'initial_eigenmode_method': 'gauss',
                  'extrapolate_forces': False,
                  'displacement_method': 'gauss',
                  'gauss_std': 0.1,
                  'order': 1,
                  'mask': None, # NB mask should not be a "parameter"
                  'displacement_center': None,
                  'displacement_radius': None,
                  'number_of_displacement_atoms': None}

    # NB: Can maybe put this in EigenmodeSearch and MinModeControl
    def log(self, parameter=None):
        """Log the parameters of the eigenmode search."""
        if self.logfile is not None:
            if parameter is not None:
                l = 'DIM:CONTROL: Updated Parameter: %s = %s\n' % (parameter,
                     str(self.get_parameter(parameter)))
            else:
                l = 'MINMODE:METHOD: Dimer\n'
                l += 'DIM:CONTROL: Search Parameters:\n'
                l += 'DIM:CONTROL: ------------------\n'
                for key in self.parameters:
                    l += 'DIM:CONTROL: %s = %s\n' % (key,
                         str(self.get_parameter(key)))
                l += 'DIM:CONTROL: ------------------\n'
                l += 'DIM:ROT: OPT-STEP ROT-STEP CURVATURE ROT-ANGLE ' + \
                     'ROT-FORCE\n'
            self.logfile.write(l)
            self.logfile.flush()

class MinModeAtoms:
    """Wrapper for Atoms with information related to minimum mode searching.

    Contains an Atoms object and pipes all unknown function calls to that
    object.
    Other information that is stored in this object are the estimate for
    the lowest eigenvalue, *curvature*, and its corresponding eigenmode,
    *eigenmode*. Furthermore, the original configuration of the Atoms
    object is stored for use in multiple minimum mode searches.
    The forces on the system are modified by inverting the component
    along the eigenmode estimate. This eventually brings the system to
    a saddle point.

    Parameters:

    atoms : Atoms object
        A regular Atoms object
    control : MinModeControl object
        Contains the parameters necessary for the eigenmode search.
        If no control object is supplied a default DimerControl
        will be created and used.
    mask: list of bool
        Determines which atoms will be moved when calling displace()
    random_seed: int
        The seed used for the random number generator. Defaults to
        modified version the current time.

    References:

    .. [1] Henkelman and Jonsson, JCP 111, 7010 (1999)
    .. [2] Olsen, Kroes, Henkelman, Arnaldsson, and Jonsson, JCP 121,
           9776 (2004).
    .. [3] Heyden, Bell, and Keil, JCP 123, 224101 (2005).
    .. [4] Kastner and Sherwood, JCP 128, 014106 (2008).

    """
    def __init__(self, atoms, control=None, eigenmodes=None, random_seed=None, **kwargs):
        self.minmode_init = True
        self.atoms = atoms

        # Initialize to None to avoid strange behaviour due to __getattr__
        self.eigenmodes = eigenmodes
        self.curvatures = None

        if control is None:
            self.control = DimerControl(**kwargs)
            w = 'Missing control object in ' + self.__class__.__name__ + \
                '. Using default: DimerControl()'
            warnings.warn(w, UserWarning)
            if self.control.logfile is not None:
                self.control.logfile.write('DIM:WARN: ' + w + '\n')
                self.control.logfile.flush()
        else:
            self.control = control
            logfile = self.control.get_logfile()
            mlogfile = self.control.get_eigenmode_logfile()
            for key in kwargs:
                if key == 'logfile':
                    logfile = kwargs[key]
                elif key == 'eigenmode_logfile':
                    mlogfile = kwargs[key]
                else:
                    self.control.set_parameter(key, kwargs[key])
            self.control.initialize_logfiles(logfile = logfile,
                                             eigenmode_logfile = mlogfile)

        # Seed the randomness
        if random_seed is None:
            t = time.time()
            if size > 1:
                t = world.sum(t) / float(size)
            # Harvest the latter part of the current time
            random_seed = int(('%30.9f' % t)[-9:])
        self.random_state = np.random.RandomState(random_seed)

        # Check the order
        self.order = self.control.get_parameter('order')

        # Construct the curvatures list
        self.curvatures = [100.0] * self.order

        # Save the original state of the atoms.
        self.atoms0 = self.atoms.copy()
        self.save_original_forces()

        # Get a reference to the log files
        self.logfile = self.control.get_logfile()
        self.mlogfile = self.control.get_eigenmode_logfile()

    def save_original_forces(self, force_calculation=False):
        """Store the forces (and energy) of the original state."""
        # NB: Would be nice if atoms.copy() took care of this.
        if self.calc is not None:
            # Hack because some calculators do not have calculation_required
            if (hasattr(self.calc, 'calculation_required') \
               and not self.calc.calculation_required(self.atoms,
               ['energy', 'forces'])) or force_calculation:
                calc = SinglePointCalculator(
                    self.atoms0,
                    energy=self.atoms.get_potential_energy(),
                    forces=self.atoms.get_forces())
                self.atoms0.set_calculator(calc)

    def initialize_eigenmodes(self, method=None, eigenmodes=None, \
                              gauss_std=None):
        """Make an initial guess for the eigenmode."""
        if eigenmodes is None:
            pos = self.get_positions()
            old_pos = self.get_original_positions()
            if method == None:
                method = \
                     self.control.get_parameter('initial_eigenmode_method')
            if method.lower() == 'displacement' and (pos - old_pos).any():
                eigenmode = normalize(pos - old_pos)
            elif method.lower() == 'gauss':
                self.displace(log = False, gauss_std = gauss_std,
                              method = method)
                new_pos = self.get_positions()
                eigenmode = normalize(new_pos - pos)
                self.set_positions(pos)
            else:
                e = 'initial_eigenmode must use either \'gauss\' or ' + \
                    '\'displacement\', if the latter is used the atoms ' + \
                    'must have moved away from the original positions.' + \
                    'You have requested \'%s\'.' % method
                raise NotImplementedError(e) # NYI
            eigenmodes = [eigenmode]

        # Create random higher order mode guesses
        if self.order > 1:
            if len(eigenmodes) == 1:
                for k in range(1, self.order):
                    pos = self.get_positions()
                    self.displace(log = False, gauss_std = gauss_std,
                                  method = method)
                    new_pos = self.get_positions()
                    eigenmode = normalize(new_pos - pos)
                    self.set_positions(pos)
                    eigenmodes += [eigenmode]

        self.eigenmodes = eigenmodes
        # Ensure that the higher order mode guesses are all orthogonal
        if self.order > 1:
            for k in range(self.order):
                self.ensure_eigenmode_orthogonality(k)
        self.eigenmode_log()

    # NB maybe this name might be confusing in context to
    # calc.calculation_required()
    def calculation_required(self):
        """Check if a calculation is required."""
        return self.minmode_init or self.check_atoms != self.atoms

    def calculate_real_forces_and_energies(self, **kwargs):
        """Calculate and store the potential energy and forces."""
        if self.minmode_init:
            self.minmode_init = False
            self.initialize_eigenmodes(eigenmodes = self.eigenmodes)
        self.rotation_required = True
        self.forces0 = self.atoms.get_forces(**kwargs)
        self.energy0 = self.atoms.get_potential_energy()
        self.control.increment_counter('forcecalls')
        self.check_atoms = self.atoms.copy()

    def get_potential_energy(self):
        """Return the potential energy."""
        if self.calculation_required():
            self.calculate_real_forces_and_energies()
        return self.energy0

    def get_forces(self, real=False, pos=None, **kwargs):
        """Return the forces, projected or real."""
        if self.calculation_required() and pos is None:
            self.calculate_real_forces_and_energies(**kwargs)
        if real and pos is None:
            return self.forces0
        elif real and pos is not None:
            old_pos = self.atoms.get_positions()
            self.atoms.set_positions(pos)
            forces = self.atoms.get_forces()
            self.control.increment_counter('forcecalls')
            self.atoms.set_positions(old_pos)
            return forces
        else:
            if self.rotation_required:
                self.find_eigenmodes(order = self.order)
                self.eigenmode_log()
                self.rotation_required = False
                self.control.increment_counter('optcount')
            return self.get_projected_forces()

    def ensure_eigenmode_orthogonality(self, order):
        mode = self.eigenmodes[order - 1].copy()
        for k in range(order - 1):
            mode = perpendicular_vector(mode, self.eigenmodes[k])
        self.eigenmodes[order - 1] = normalize(mode)

    def find_eigenmodes(self, order=1):
        """Launch eigenmode searches."""
        if self.control.get_parameter('eigenmode_method').lower() != 'dimer':
            e = 'Only the Dimer control object has been implemented.'
            raise NotImplementedError(e) # NYI
        for k in range(order):
            if k > 0:
                self.ensure_eigenmode_orthogonality(k + 1)
            search = DimerEigenmodeSearch(self, self.control, \
                eigenmode = self.eigenmodes[k], basis = self.eigenmodes[:k])
            search.converge_to_eigenmode()
            search.set_up_for_optimization_step()
            self.eigenmodes[k] = search.get_eigenmode()
            self.curvatures[k] = search.get_curvature()

    def get_projected_forces(self, pos=None):
        """Return the projected forces."""
        if pos is not None:
            forces = self.get_forces(real = True, pos = pos).copy()
        else:
            forces = self.forces0.copy()

        # Loop through all the eigenmodes
        # NB: Can this be done with a linear combination, instead?
        for k, mode in enumerate(self.eigenmodes):
            # NYI This If statement needs to be overridable in the control
            if self.get_curvature(order = k) > 0.0 and self.order == 1:
                forces = -parallel_vector(forces, mode)
            else:
                forces -= 2 * parallel_vector(forces, mode)
        return forces

    def restore_original_positions(self):
        """Restore the MinModeAtoms object positions to the original state."""
        self.atoms.set_positions(self.get_original_positions())

    def get_barrier_energy(self):
        """The energy difference between the current and original states"""
        try:
            original_energy = self.get_original_potential_energy()
            dimer_energy = self.get_potential_energy()
            return dimer_energy - original_energy
        except RuntimeError:
            w = 'The potential energy is not available, without further ' + \
                'calculations, most likely at the original state.'
            warnings.warn(w, UserWarning)
            return np.nan

    def get_control(self):
        """Return the control object."""
        return self.control

    def get_curvature(self, order='max'):
        """Return the eigenvalue estimate."""
        if order == 'max':
            return max(self.curvatures)
        else:
            return self.curvatures[order - 1]

    def get_eigenmode(self, order=1):
        """Return the current eigenmode guess."""
        return self.eigenmodes[order - 1]

    def get_atoms(self):
        """Return the unextended Atoms object."""
        return self.atoms

    def set_atoms(self, atoms):
        """Set a new Atoms object"""
        self.atoms = atoms

    def set_eigenmode(self, eigenmode, order=1):
        """Set the eigenmode guess."""
        self.eigenmodes[order - 1] = eigenmode

    def set_curvature(self, curvature, order=1):
        """Set the eigenvalue estimate."""
        self.curvatures[order - 1] = curvature

    # Pipe all the stuff from Atoms that is not overwritten.
    # Pipe all requests for get_original_* to self.atoms0.
    def __getattr__(self, attr):
        """Return any value of the Atoms object"""
        if 'original' in attr.split('_'):
            attr = attr.replace('_original_', '_')
            return getattr(self.atoms0, attr)
        else:
            return getattr(self.atoms, attr)

    def __len__(self):
        return len(self.atoms)
        
    def displace(self, displacement_vector=None, mask=None, method=None,
                 displacement_center=None, radius=None, number_of_atoms=None,
                 gauss_std=None, mic=True, log=True):
        """Move the atoms away from their current position.

        This is one of the essential parts of minimum mode searches.
        The parameters can all be set in the control object and overwritten
        when this method is run, apart from *displacement_vector*.
        It is preferred to modify the control values rather than those here
        in order for the correct ones to show up in the log file.

        *method* can be either 'gauss' for random displacement or 'vector'
        to perform a predefined displacement.

        *gauss_std* is the standard deviation of the gauss curve that is
        used for random displacement.

        *displacement_center* can be either the number of an atom or a 3D
        position. It must be accompanied by a *radius* (all atoms within it
        will be displaced) or a *number_of_atoms* which decides how many of
        the closest atoms will be displaced.

        *mic* controls the usage of the Minimum Image Convention.

        If both *mask* and *displacement_center* are used, the atoms marked
        as False in the *mask* will not be affected even though they are
        within reach of the *displacement_center*.

        The parameters priority order:
        1) displacement_vector
        2) mask
        3) displacement_center (with radius and/or number_of_atoms)

        If both *radius* and *number_of_atoms* are supplied with
        *displacement_center*, only atoms that fulfill both criteria will
        be displaced.

        """

        # Fetch the default values from the control
        if mask is None:
            mask = self.control.get_parameter('mask')
        if method is None:
            method = self.control.get_parameter('displacement_method')
        if gauss_std is None:
            gauss_std = self.control.get_parameter('gauss_std')
        if displacement_center is None:
            displacement_center = \
                    self.control.get_parameter('displacement_center')
        if radius is None:
            radius = self.control.get_parameter('displacement_radius')
        if number_of_atoms is None:
            number_of_atoms = \
                    self.control.get_parameter('number_of_displacement_atoms')

        # Check for conflicts
        if displacement_vector is not None and method.lower() != 'vector':
            e = 'displacement_vector was supplied but a different method ' + \
                '(\'%s\') was chosen.\n' % str(method)
            raise ValueError(e)
        elif displacement_vector is None and method.lower() == 'vector':
            e = 'A displacement_vector must be supplied when using ' + \
                'method = \'%s\'.\n' % str(method)
            raise ValueError(e)
        elif displacement_center is not None and radius is None and \
           number_of_atoms is None:
            e = 'When displacement_center is chosen, either radius or ' + \
                'number_of_atoms must be supplied.\n'
            raise ValueError(e)

        # Set up the center of displacement mask (c_mask)
        if displacement_center is not None:
            c = displacement_center
            # Construct a distance list
            # The center is an atom
            if isinstance(c, int):
                # Parse negative indexes
                c = displacement_center % len(self)
                d = [(k, self.get_distance(k, c, mic = mic)) for k in \
                     range(len(self))]
            # The center is a position in 3D space
            elif len(c) == 3 and [type(c_k) for c_k in c] == [float]*3:
                # NB: MIC is not considered.
                d = [(k, norm(self.get_positions()[k] - c)) \
                     for k in range(len(self))]
            else:
                e = 'displacement_center must be either the number of an ' + \
                    'atom in MinModeAtoms object or a 3D position ' + \
                    '(3-tuple of floats).'
                raise ValueError(e)

            # Set up the mask
            if radius is not None:
                r_mask = [dist[1] < radius for dist in d]
            else:
                r_mask = [True for _ in self]

            if number_of_atoms is not None:
                d_sorted = [n[0] for n in sorted(d, key = lambda k: k[1])]
                n_nearest = d_sorted[:number_of_atoms]
                n_mask = [k in n_nearest for k in range(len(self))]
            else:
                n_mask = [True for _ in self]

            # Resolve n_mask / r_mask conflicts
            c_mask = [n_mask[k] and r_mask[k] for k in range(len(self))]
        else:
            c_mask = None

        # Set up a True mask if there is no mask supplied
        if mask is None:
            mask = [True for _ in self]
            if c_mask is None:
                w = 'It was not possible to figure out which atoms to ' + \
                    'displace, Will try to displace all atoms.\n'
                warnings.warn(w, UserWarning)
                if self.logfile is not None:
                    self.logfile.write('MINMODE:WARN: ' + w + '\n')
                    self.logfile.flush()

        # Resolve mask / c_mask conflicts
        if c_mask is not None:
            mask = [mask[k] and c_mask[k] for k in range(len(self))]

        if displacement_vector is None:
            displacement_vector = []
            for k in range(len(self)):
                if mask[k]:
                    diff_line = []
                    for _ in range(3):
                        if method.lower() == 'gauss':
                            if not gauss_std:
                                gauss_std = \
                                self.control.get_parameter('gauss_std')
                            diff = self.random_state.normal(0.0, gauss_std)
                        else:
                            e = 'Invalid displacement method >>%s<<' % \
                                 str(method)
                            raise ValueError(e)
                        diff_line.append(diff)
                    displacement_vector.append(diff_line)
                else:
                    displacement_vector.append([0.0]*3)

        # Remove displacement of masked atoms
        for k in range(len(mask)):
            if not mask[k]:
                displacement_vector[k] = [0.0]*3

        # Perform the displacement and log it
        if log:
            pos0 = self.get_positions()
        self.set_positions(self.get_positions() + displacement_vector)
        if log:
            parameters = {'mask': mask,
                          'displacement_method': method,
                          'gauss_std': gauss_std,
                          'displacement_center': displacement_center,
                          'displacement_radius': radius,
                          'number_of_displacement_atoms': number_of_atoms}
            self.displacement_log(self.get_positions() - pos0, parameters)

    def eigenmode_log(self):
        """Log the eigenmodes (eigenmode estimates)"""
        if self.mlogfile is not None:
            l = 'MINMODE:MODE: Optimization Step: %i\n' % \
                   (self.control.get_counter('optcount'))
            for m_num, mode in enumerate(self.eigenmodes):
                l += 'MINMODE:MODE: Order: %i\n' % m_num
                for k in range(len(mode)):
                    l += 'MINMODE:MODE: %7i %15.8f %15.8f %15.8f\n' % (k,
                         mode[k][0], mode[k][1], mode[k][2])
            self.mlogfile.write(l)
            self.mlogfile.flush()

    def displacement_log(self, displacement_vector, parameters):
        """Log the displacement"""
        if self.logfile is not None:
            lp = 'MINMODE:DISP: Parameters, different from the control:\n'
            mod_para = False
            for key in parameters:
                if parameters[key] != self.control.get_parameter(key):
                    lp += 'MINMODE:DISP: %s = %s\n' % (str(key),
                                                       str(parameters[key]))
                    mod_para = True
            if mod_para:
                l = lp
            else:
                l = ''
            for k in range(len(displacement_vector)):
                l += 'MINMODE:DISP: %7i %15.8f %15.8f %15.8f\n' % (k,
                     displacement_vector[k][0], displacement_vector[k][1],
                     displacement_vector[k][2])
            self.logfile.write(l)
            self.logfile.flush()

    def summarize(self):
        """Summarize the Minimum mode search."""
        if self.logfile is None:
            logfile = sys.stdout
        else:
            logfile = self.logfile

        c = self.control
        label = 'MINMODE:SUMMARY: '

        l = label + '-------------------------\n'
        l += label + 'Barrier: %16.4f\n' % self.get_barrier_energy()
        l += label + 'Curvature: %14.4f\n' % self.get_curvature()
        l += label + 'Optimizer steps: %8i\n' % c.get_counter('optcount')
        l += label + 'Forcecalls: %13i\n' % c.get_counter('forcecalls')
        l += label + '-------------------------\n'

        logfile.write(l)

class MinModeTranslate(Optimizer):
    """An Optimizer specifically tailored to minimum mode following."""
    def __init__(self, atoms, logfile='-', trajectory=None):
        Optimizer.__init__(self, atoms, None, logfile, trajectory)

        self.control = atoms.get_control()

        # Make a header for the log
        if self.logfile is not None:
            l = ''
            if isinstance(self.control, DimerControl):
                l = 'MinModeTranslate: STEP      TIME          ENERGY    ' + \
                    'MAX-FORCE     STEPSIZE    CURVATURE  ROT-STEPS\n'
            self.logfile.write(l)
            self.logfile.flush()

        # Load the relevant parameters from control
        self.cg_on = self.control.get_parameter('cg_translation')
        self.trial_step = self.control.get_parameter('trial_trans_step')
        self.max_step = self.control.get_parameter('maximum_translation')

        # Start conjugate gradient
        if self.cg_on:
            self.cg_init = True

    def initialize(self):
        """Set initial values."""
        self.r0 = None
        self.f0 = None

    def run(self, fmax=0.05, steps=100000000):
        """Run structure optimization algorithm.

        This method will return when the forces on all individual
        atoms are less than *fmax* or when the number of steps exceeds
        *steps*.

        """

        self.fmax = fmax
        step = 0
        while step < steps:
            f = self.atoms.get_forces()
            self.call_observers()
            if self.converged(f):
                self.log(f, None)
                return
            self.step(f)
            self.nsteps += 1
            step += 1

    def step(self, f):
        """Perform the optimization step."""
        atoms = self.atoms
        r = atoms.get_positions()
        curv = atoms.get_curvature()
        f0p = f.copy()
        r0 = r.copy()
        direction = f0p.copy()
        if self.cg_on:
            direction = self.get_cg_direction(direction)
        direction = normalize(direction)
        if curv > 0.0:
            step = direction * self.max_step
        else:
            r0t = r0 + direction * self.trial_step
            f0tp = self.atoms.get_projected_forces(r0t)
            F = np.vdot((f0tp + f0p), direction) / 2.0
            C = np.vdot((f0tp - f0p), direction) / self.trial_step
            step = ( -F / C + self.trial_step / 2.0 ) * direction
            if norm(step) > self.max_step:
                step = direction * self.max_step
        self.log(f0p, norm(step))

        atoms.set_positions(r + step)

        self.f0 = f.flat.copy()
        self.r0 = r.flat.copy()

    def get_cg_direction(self, direction):
        """Apply the Conjugate Gradient algorithm to the step direction."""
        if self.cg_init:
            self.cg_init = False
            self.direction_old = direction.copy()
            self.cg_direction = direction.copy()
        old_norm = np.vdot(self.direction_old, self.direction_old)
        # Polak-Ribiere Conjugate Gradient
        if old_norm != 0.0:
            betaPR = np.vdot(direction, (direction - self.direction_old)) / \
                     old_norm
        else:
            betaPR = 0.0
        if betaPR < 0.0:
            betaPR = 0.0
        self.cg_direction = direction + self.cg_direction * betaPR
        self.direction_old = direction.copy()
        return self.cg_direction.copy()

    def log(self, f, stepsize):
        """Log each step of the optimization."""
        if self.logfile is not None:
            T = time.localtime()
            e = self.atoms.get_potential_energy()
            fmax = sqrt((f**2).sum(axis = 1).max())
            rotsteps = self.atoms.control.get_counter('rotcount')
            curvature = self.atoms.get_curvature()
            l = ''
            if stepsize:
                if isinstance(self.control, DimerControl):
                    l = '%s: %4d  %02d:%02d:%02d %15.6f %12.4f %12.6f ' \
                        '%12.6f %10d\n' % ('MinModeTranslate', self.nsteps,
                         T[3], T[4], T[5], e, fmax, stepsize, curvature,
                         rotsteps)
            else:
                if isinstance(self.control, DimerControl):
                    l = '%s: %4d  %02d:%02d:%02d %15.6f %12.4f %s ' \
                        '%12.6f %10d\n' % ('MinModeTranslate', self.nsteps,
                         T[3], T[4], T[5], e, fmax, '    --------',
                         curvature, rotsteps)
            self.logfile.write(l)
            self.logfile.flush()

def read_eigenmode(mlog, index = -1):
    """Read an eigenmode.
    To access the pre optimization eigenmode set index = 'null'.

    """
    if isinstance(mlog, str):
        f = open(mlog, 'r')
    else:
        f = mlog

    lines = f.readlines()

    # Detect the amount of atoms and iterations
    k = 2
    while lines[k].split()[1].lower() not in ['optimization', 'order']:
        k += 1
    n = k - 2
    n_itr = (len(lines) // (n + 1)) - 2

    # Locate the correct image.
    if isinstance(index, str):
        if index.lower() == 'null':
            i = 0
        else:
            i = int(index) + 1
    else:
        if index >= 0:
            i = index + 1
        else:
            if index < -n_itr - 1:
                raise IndexError('list index out of range')
            else:
                i = index

    mode = np.ndarray(shape = (n, 3), dtype = float)
    k_atom = 0
    for k in range(1, n + 1):
        line = lines[i * (n + 1) + k].split()
        for k_dim in range(3):
            mode[k_atom][k_dim] = float(line[k_dim + 2])
        k_atom += 1

    return mode

# Aliases
DimerAtoms = MinModeAtoms
DimerTranslate = MinModeTranslate